K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2016

A B C D O

  • Áp dụng bđt trong tam giác , ta có : 

AB < OB + OA ; BC < OB + OC ; CD < OC + OD ; AD < OA + OD

=> AB +BC + CD + AD < 2(OA + OB + OC + OD)

=> (AB+BC+CD+AD)/2<AC+BD (1)

  • AB + BC > AC ; BC + CD > BD ; CD + AD > AC ; AB + AD > BD

=> 2(AB + BC + CD + DA) > 2(AC + BD)

=> AB + BC + CD + DA > AC + BD (2)

Từ (1) và (2) suy ra đpcm

 

 

Y
16 tháng 6 2019

xem lại đề nha bn

Tứ giác ABCD là hình vuông thì bằng đó

16 tháng 11 2021

Xét ΔADB có 

M là trung điểm của AB

P là trung điểm của AD

Do đó: MP là đường trung bình của ΔADB

Suy ra: MP//BD và MP=BD/2(1)

Xét ΔBCD có 

N là trung điểm của BC

Q là trung điểm của CD

Do đó: NQ là đường trung bình của ΔBCD

Suy ra: NQ//BD và NQ=BD/2(2)

Từ (1) và (2) suy ra MP//NQ và MP=NQ

hay MPQN là hình bình hành

2 tháng 11 2015

bài này khá dễ , áp dụng đường trung bình trong tam giác , sau đó áp dụng giả thiết AC = BD

1:

ΔOAB vuông tại O

=>AB^2=AO^2+BO^2

ΔBOC vuông tại O

=>BC^2=BO^2+CO^2

ΔAOD vuông tại O

=>AD^2=AO^2+DO^2

ΔDOC vuông tại O

=>DC^2=OC^2+OD^2

AB^2+BC^2+CD^2+DA^2

=OA^2+OB^2+OC^2+OD^2+OA^2+OB^2+OC^2+OD^2

=2(OA^2+OB^2+OC^2+OD^2)

2:

AB^2+CD^2

=OA^2+OB^2+OC^2+OD^2

=OA^2+OD^2+OB^2+OC^2

=AD^2+BC^2

22 tháng 3 2016

Từ \(2\overrightarrow{ỊJ}=\overrightarrow{AB}+\overrightarrow{CD}\) suy ra 

\(AB^2+BC^2+CD^2+DA^2=AC^2+BD^2+4IJ^2\Leftrightarrow CB^2+DA^2=CA^2+DB^2+2AB^2.CD^2\)

                                                \(\Leftrightarrow2.\overrightarrow{AB}\overrightarrow{CD}=AD^2-AC^2+BC^2-BD^2\)