Tìm max, min:
a) A = (2x - 1)(x - 3)
b) B = (1 - 2x)(x - 3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
: a) A= (2x - 1)(x - 3)
A=\(2x^2-6x-x+3=\left(2x^2-\frac{2.\sqrt{2}.7}{2\sqrt{2}}x+\frac{49}{8}\right)-\frac{49}{8}+3\)
=\(\left(\sqrt{2}x-\frac{7}{2\sqrt{2}}\right)^2-\frac{25}{8}\)>=\(-\frac{25}{8}\)
dấu = xảy ra khi \(x=\frac{7}{4}\)
=> Min A=\(-\frac{25}{8}\)khi x=\(\frac{7}{4}\)
b) B= (1 - 2x)(x - 3)
=\(-2x^2+6x+x-3\)
=\(-\left(2x^2-7x+\frac{49}{8}\right)-3-\frac{49}{8}\)
=\(-\frac{73}{8}-\left(\sqrt{2}x-\frac{7}{2\sqrt{2}}\right)^2\)<= \(-\frac{73}{8}\)
dấu = xảy ra khi x=\(\frac{7}{4}\)
=> MaxB=-73/8 khi x=7/4
$A=2x-\sqrt{x}=2(x-\frac{1}{2}\sqrt{x}+\frac{1}{4^2})-\frac{1}{8}$
$=2(\sqrt{x}-\frac{1}{4})^2-\frac{1}{8}$
$\geq \frac{-1}{8}$
Vậy $A_{\min}=-\frac{1}{8}$. Giá trị này đạt tại $x=\frac{1}{16}$
$B=x+\sqrt{x}$
Vì $x\geq 0$ nên $B\geq 0+\sqrt{0}=0$
Vậy $B_{\min}=0$. Giá trị này đạt tại $x=0$
a.
\(y'=\dfrac{2-x}{2x^2\sqrt{x-1}}=0\Rightarrow x=2\)
\(y\left(1\right)=0\) ; \(y\left(2\right)=\dfrac{1}{2}\) ; \(y\left(5\right)=\dfrac{2}{5}\)
\(\Rightarrow y_{min}=y\left(1\right)=0\)
\(y_{max}=y\left(2\right)=\dfrac{1}{2}\)
b.
\(y'=\dfrac{1-3x}{\sqrt{\left(x^2+1\right)^3}}< 0\) ; \(\forall x\in\left[1;3\right]\Rightarrow\) hàm nghịch biến trên [1;3]
\(\Rightarrow y_{max}=y\left(1\right)=\dfrac{4}{\sqrt{2}}=2\sqrt{2}\)
\(y_{min}=y\left(3\right)=\dfrac{6}{\sqrt{10}}=\dfrac{3\sqrt{10}}{5}\)
c.
\(y=1-cos^2x-cosx+1=-cos^2x-cosx+2\)
Đặt \(cosx=t\Rightarrow t\in\left[-1;1\right]\)
\(y=f\left(t\right)=-t^2-t+2\)
\(f'\left(t\right)=-2t-1=0\Rightarrow t=-\dfrac{1}{2}\)
\(f\left(-1\right)=2\) ; \(f\left(1\right)=0\) ; \(f\left(-\dfrac{1}{2}\right)=\dfrac{9}{4}\)
\(\Rightarrow y_{min}=0\) ; \(y_{max}=\dfrac{9}{4}\)
d.
Đặt \(sinx=t\Rightarrow t\in\left[-1;1\right]\)
\(y=f\left(t\right)=t^3-3t^2+2\Rightarrow f'\left(t\right)=3t^2-6t=0\Rightarrow\left[{}\begin{matrix}t=0\\t=2\notin\left[-1;1\right]\end{matrix}\right.\)
\(f\left(-1\right)=-2\) ; \(f\left(1\right)=0\) ; \(f\left(0\right)=2\)
\(\Rightarrow y_{min}=-2\) ; \(y_{max}=2\)
a) A = (2x - 1)(x - 3)
=2x2-6x-x+3
=2x2-7x+3
\(=2\left(x^2-\frac{7x}{2}+\frac{3}{2}\right)\)
\(=2\left(x^2-\frac{7x}{2}+\frac{49}{16}-\frac{50}{16}\right)\)
\(=2\left(x-\frac{7}{4}\right)^2-\frac{25}{8}\ge0-\frac{25}{8}=-\frac{25}{8}\)
Dấu = khi \(x=\frac{7}{4}\)
Vậy MinA\(=-\frac{25}{8}\) khi \(x=\frac{7}{4}\)
b) B = (1 - 2x)(x - 3)
=x-3-2x2+6x
=-2x2+7x-3
\(=-2\left(x^2-\frac{7x}{2}+\frac{3}{2}\right)\)
\(=-2\left(x^2-\frac{7x}{2}+\frac{49}{16}-\frac{50}{16}\right)\)
\(=\frac{25}{8}-2\left(x-\frac{7}{4}\right)^2\le\frac{25}{8}-0=\frac{25}{8}\)
Dấu = khi \(x=\frac{7}{4}\)
Vậy MaxA\(=\frac{25}{8}\) khi \(x=\frac{7}{4}\)