Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BÀI 1:
a) \(A=x^2+2x+3=\left(x+1\right)^2+2\ge2\)
Vậy MIN \(A=2\)khi \(x=-1\)
b) \(B=x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy MIN \(B=\frac{3}{4}\)khi \(x=-\frac{1}{2}\)
c) \(C=2x^2+3x-1=2\left(x+\frac{3}{4}\right)^2-\frac{17}{8}\ge-\frac{17}{8}\)
Vậy MIN \(C=-\frac{17}{8}\)khi \(x=-\frac{3}{4}\)
d) \(D=4x^2-x=\left(2x-\frac{1}{4}\right)^2-\frac{1}{16}\ge-\frac{1}{16}\)
Vậy MIN \(D=-\frac{1}{16}\)khi \(x=\frac{1}{8}\)
a) A = (2x−1)(x−3)
=\(2x^2-6x-x+3=\left(2x^2-\frac{2.\sqrt{2}x.7}{2\sqrt{2}}+\frac{49}{8}\right)-\frac{49}{8}+3\)
=\(\left(\sqrt{2}x-\frac{7}{2\sqrt{2}}\right)^2-\frac{25}{8}\)>=\(-\frac{25}{8}\)
dấu = xảy ra khi x=\(\frac{7}{4}\)
=> Min A=\(-\frac{25}{8}\) khi x=7/4
b) B = (1−2x)(x−3)
=\(x-3+6x-2x^2=-\left(2x^2-7x+3\right)\)
=\(-\left(\sqrt{2}x-\frac{7}{2\sqrt{2}}\right)^2\)+\(\frac{49}{8}-3\)<=25/8
dấu = xảy ra khi x=7/4
=> Max B =25/8 khi x=7/4
a) A = (2x - 1)(x - 3)
=2x2-6x-x+3
=2x2-7x+3
\(=2\left(x^2-\frac{7x}{2}+\frac{3}{2}\right)\)
\(=2\left(x^2-\frac{7x}{2}+\frac{49}{16}-\frac{50}{16}\right)\)
\(=2\left(x-\frac{7}{4}\right)^2-\frac{25}{8}\ge0-\frac{25}{8}=-\frac{25}{8}\)
Dấu = khi \(x=\frac{7}{4}\)
Vậy MinA\(=-\frac{25}{8}\) khi \(x=\frac{7}{4}\)
b) B = (1 - 2x)(x - 3)
=x-3-2x2+6x
=-2x2+7x-3
\(=-2\left(x^2-\frac{7x}{2}+\frac{3}{2}\right)\)
\(=-2\left(x^2-\frac{7x}{2}+\frac{49}{16}-\frac{50}{16}\right)\)
\(=\frac{25}{8}-2\left(x-\frac{7}{4}\right)^2\le\frac{25}{8}-0=\frac{25}{8}\)
Dấu = khi \(x=\frac{7}{4}\)
Vậy MaxA\(=\frac{25}{8}\) khi \(x=\frac{7}{4}\)