K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2016

\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}\)

    \(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2015.2016}\)

    \(< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\)

    \(< 1-\frac{1}{2016}< 1\)

=> S<1

12 tháng 8 2016

thankshihi

21 tháng 1 2018

S1 = 1-2+3-4+....+2017-2018

     = (-1)+(-1)+....+(-1)

     = (-1) x 1009

     =   -1009

22 tháng 1 2018

S3=2019 nha, mình ko kip viết cách giai

12 tháng 8 2016

Ta có:

S = 1/22 + 1/32 + 1/42 + ... + 1/20162

    = 1/2.2 + 1/3.3 + 1/4.4 + ... + 1/2016.2016

S  < 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/2015.2016

S  < 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2015 - 1/2016

S  < 1 - 1/2016

Mà 1 - 1/2016 < 1

=> S < 1

Vậy S < 1

Ủng hộ nha

20 tháng 10 2016

1/3^2-1/3^4=3^2/3^4-1/3^4=8/3^4

1/3^6-1/3^8=1./3^4.8/3^4=8/3^8

1/3^2014-1/3^2016=8/3^2004

A/8=1/3^4+1/3^8+...+..1/3^2004

A/(8.3^4)=1/3^8+1/3^12+..+1/3^2008

A(1/8-1/(8.3^4)=1/3^4-1/3^2008=(3^2004-1)/3^2008

10.A(1/3^4)=...

10A=(3^2004-1)/3^2004<1

vậy A<1/10=0,1

21 tháng 10 2016

hay lắm bạn

12 tháng 12 2017

Ta có :

\(S=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+...+\left(\frac{1}{2}\right)^{2016}+\left(\frac{1}{2}\right)^{2017}\)

\(2S=1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{2015}+\left(\frac{1}{2}\right)^{2016}\)

\(2S-S=\left[1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{2015}+\left(\frac{1}{2}\right)^{2016}\right]-\left[\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+...+\left(\frac{1}{2}\right)^{2016}+\left(\frac{1}{2}\right)^{2017}\right]\)

\(S=1-\left(\frac{1}{2}\right)^{2017}< 1\)

8 tháng 7 2018

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)

\(\Rightarrow S< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}< 1\)

Vậy S<1

8 tháng 7 2018

Ta có :

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{\left(n-1\right)^2}+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-2\right)\left(n-1\right)}+\frac{1}{\left(n-1\right)n}\)

\(\Rightarrow S< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-2}-\frac{1}{n-1}+\frac{1}{n-1}-\frac{1}{n}\)

\(\Rightarrow S< 1-\frac{1}{n}< 1\)

Vậy \(S=1\)