Cho hình bình hành ABCD, O là giao 2 đường chéo. E và F lần lượt là trung điểm OD và OB.
a) CM: AE // CF
b) Gọi K là giao của AE và DC. Cm DK = \(\frac{1}{2}\)KC
AI LÀM NHANH MÌNH TICK CHO CẢ TUẦN NHES. CAMON CACBAN NHIỀU
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Xét tgAOE và tg COF có
^AOE = ^ COF (góc đối đỉnh) (1)
OA=OC (trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường) (2)
OD=OB mà OE=OD/2 và OF=OB/2 => OE=OF (3)
Từ (1) (2) (3) => tg AOE = tg COF => ^EAO = ^FCO => AE//CF (hai đường thẳng bị cắt bởi 1 cát tuyến có hai góc so le trong bằng nhau thì // với nhau)
b/
Xét tg DEK và tg DFC có
^FDC chung
^DEK = ^DFC (góc đồng vị)
=> tg DEK đồng dạng với tg DFC \(\Rightarrow\frac{DE}{DF}=\frac{DK}{DC}\)
Mà DE=OE=OF \(\Rightarrow\frac{DE}{DF}=\frac{DK}{DC}=\frac{1}{3}\Rightarrow\frac{DK}{KC}=\frac{1}{2}\Rightarrow DK=\frac{KC}{2}\)
vào đây tham khảo nè bạn : https://h.vn/hoi-dap/question/90294.html
Chúc bạn hoc tốt
O là giao điểm 2 đường chéo AC ; BD ( gt )
Suy ra AO = OC và OD = OB ( ABCD - httg )
Ta có :
E là trung điểm OD ( gt )
Suy ra OE = \(\frac{1}{2}\). OD
F là trung điểm Ob ( gt )
Suy ra OF = \(\frac{1}{2}\). OB
Mà OD = OB
Suy ra OE = OF
Tứ giác AFCE có :
OA = OC ( cmt )
OE = OF ( cmt )
Nên O là giao điểm của 2 đường chéo AC ; EF
Suy ra AFCE là hình bình hành
Suy ra AE // CF
Từ O kẻ đường thẳng CD tại H sao cho OH // EK // CF
Xét tam giác DOH có ;
E trung điểm OH
EK // OH
K là trung điểm DH
Suy ra DK = KH ( 1 )
Xét hình thang AKCF có :
O là trung điểm EF ( câu a )
OH // EK // CF ( theo cách vẽ đường thẳng OH )
Suy ra H là trung điểm KC
Từ ( 1 ) ; ( 2 ) suy ra DK = KH = HC
Mà : KC = KH + HC
Suy ra KC = DK + DK ( vì DK = KH = HC )
Suy ra KC = 2DK
Suy ra DK = \(\frac{1}{2}\)KC ( đpcm )
:v mỏi tay
Bài 1:
a: Xét tứ giác AECF có
O là trung điểm của AC
O là trung điểm của FE
Do đó: AECF là hình bình hành
Suy ra: AE//CF
b: Gọi H là trung điểm của KC
Xét ΔAKC cso
O là trung điểm của AC
H là trung điểm của KC
Do đó: OH là đường trung bình
=>OH//AK
hay OH//KE
Xét ΔDOH có
E là trung điểm của DO
EK//OH
Do đó: K là trung điểm của DH
=>DK=KH=HC
hay DK=KC/2
(tự vẽ hình nhé)
a) OD = OB (gt) mà ED = EO = OD/2 ; FO = FB = OB/2
=> ED = EO = FO = FB
Ta có: OA = OC (gt) và OE = OF (cmt) => tứ giác AECF là hbh => AE // CF
b) Kẻ OS // AK (S thuộc DC)
Tg DOS: EO = ED (cmt) ; OS // EK (do OS //AK) => KD = KS. (1)
Hình thang EKCF: OE = OF (cmt) ; OS // EK (cmt) => KS = SC (2)
Từ (1) và (2) => KD = KS = SC (*)
Mặt khác: KS + SC = KC => 2 * KS = KC (**)
Từ (*) và (**) => đpcm
O là giao điểm của hai đường chéo AC,BD(gt)
=> AO=OC, OD=OB (vì ABCD là hình bình hành)
Lại có;
E là trung điểm của OD(gt)
=> OE=1/2.OD
F là trung điểm của OB(gt)
=> OF=1/2.OB
Mà OD=OB (cmt)
=> OE=OF
Tứ giác AFCE có: OA=OC(cmt) và OE=OF(cmt)
=> O là giao điểm của hai đường chéo AC,EF cắt nhau tại trung điểm mỗi đoạn
=> AFCE là hình bình hành
=> AE//CF (vì AE, CF là hai cạnh đối nhau)
Có AE//CF (cmt)
=> EK// CF (vì K thuộc AE)
Từ O vẽ đường thẳng cắt CD tại H sao cho OH//EK//CF
Xét tam giác DOH có: E là trung điểm của OD
EK//OH (theo cách vẽ đường thẳng OH)
=> K là trung điểm của DH
=> DK=KH (1)
Xét hình thang EKCF có: O là trung điểm của EF (theo câu a)
OH//EK//CF (theo cách vẽ đường thẳng OH)
=> H là trung điểm của KC
=> KH=HC (2)
Từ (1) và (2) => DK=KH=HC
Lại có: KC=KH+HC => KC= DK+DK (vì DK=KH=HC)
=> KC=2DK => DK=1/2KC
a. Có O là giao điểm của hai đường chéo AC,BD(gt)
=> AO=OC, OD=OB (vì ABCD là hình bình hành)
Lại có E là trung điểm của OD(gt) => OE=1/2.OD
F là trung điểm của OB(gt) => OF=1/2.OB
Mà OD=OB (cmt)
=> OE=OF
Tứ giác AFCE có: OA=OC(cmt) và OE=OF(cmt)
=> O là giao điểm của hai đường chéo AC,EF cắt nhau tại trung điểm mỗi đoạn
=> AFCE là hình bình hành
=> AE//CF (vì AE, CF là hai cạnh đối nhau)
b. Có AE//CF (theo câu a)
=> EK// CF (vì K thuộc AE)
Từ O vẽ đường thẳng cắt CD tại H sao cho OH//EK//CF
Xét tam giác DOH có: E là trung điểm của OD
EK//OH (theo cách vẽ đường thẳng OH)
=> K là trung điểm của DH
=> DK=KH (1)
Xét hình thang EKCF có: O là trung điểm của EF (theo câu a)
OH//EK//CF (theo cách vẽ đường thẳng OH)
=> H là trung điểm của KC
=> KH=HC (2)
Từ (1) và (2) => DK=KH=HC
Lại có: KC=KH+HC => KC= DK+DK (vì DK=KH=HC)
=> KC=2DK => DK=1/2KC
2/a. Có: E là trung điểm của AB(gt) => AE=1/2.AB
F là trung điểm của CD(gt) => CF=1/2.CD
Mà AB=CD (vì ABCD là hình bình hành và AB, CD là hai cạch đối nhau)
=> AE=CF
Lại có AB//CD (vì ABCD là hình bình hành và AB, CD là hai cạch đối nhau)
=> AE//CF (vì E thuộc AB, F thuộc CD)
Tứ giác AECF có: AE=CF (cmt) và AE//CF (cmt)
=> AECF là hình bình hành
b. Tam giác DCN có: F là trung điểm của CD(gt) và FM//CN (vì M thuộc AF, N thuộc CE và AF//CE)
=> M là trung điểm của DN (định lí 1 của bài đường trung bình của tam giác)
=> DM=MN (a)
Tam giác ABM có: E là trung điểm của AB(gt) và AM//EN (vì M thuộc AF, N thuộc CE và AF//CE)
=> N là trung điểm của MB
=> MN=NB (b)
Từ (a) và (b) => DM=MN=NB
hình như bạn làm lộn rồi bạn ơi