Cho tứ giác ABCD có góc A + góc B = 180
Chứng minh tứ giác ABCD là hình thang
giải giùm mình nha mình like cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác ABCD có
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\)
\(\Leftrightarrow2\cdot\left(\widehat{A}+\widehat{D}\right)=360^0\)
\(\Leftrightarrow\widehat{A}+\widehat{D}=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên AB//CD
Xét tứ giác ABCD có AB//CD
nên ABCD là hình thang
mà \(\widehat{A}=\widehat{B}\)
nên ABCD là hình thang cân
Xét ΔACB có AB=AC
nên ΔACB cân tại A
Suy ra: \(\widehat{ABC}=\widehat{ACB}\)
mà \(\widehat{ACB}=\widehat{DCB}\)
nên \(\widehat{ABC}=\widehat{DCB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//DC
hay ABDC là hình thang
TAm giác AOB cuông tại O , theo py ta go
=> AB^2 = OA^2 + OB^2
Tương tự CD^2 = OC^2 + OD^2
BC^2 = OB^2 + OC^2
AD^2 = OA^2 + OD^2
AB^2 + CD^2 = OA^2 + OB^2 + OC^2 + CD^2 = BC^2 + AD^2 ( ĐPCM)
a/ Gọi x là số đo góc A tứ giác ABCD.(x>0)
Số đo góc B là x+20
Số đo góc C là 3x
Số đo góc D là 3x+20
Vì tổng số đo góc trong tứ giác là 360onên ta có phương trình:
x+x+20+3x+3x+20=360
<=>8x = 320
<=> x=40(nhận)
Vậy góc A=40O
GÓC B=60O
GÓC C=120O
GÓC D = 140O
B/ Ta có: góc A + góc D = 40o+140o=180o
Mà 2 góc này ở vị trí trong cùng phía
Nên AB//CD
=> Tứ giác ABCD là hình thang
Xét ΔADB và ΔBCA có
AD=BC
\(\widehat{DAB}=\widehat{CBA}\)
AB chung
Do đó: ΔADB=ΔBCA
Suy ra: DB=CA
Xét ΔACD và ΔBDC có
AC=BD
DC chung
AD=BC
Do đó: ΔACD=ΔBDC
Suy ra: \(\widehat{ADC}=\widehat{BCD}\)
Xét tứ giác ABCD có
\(\widehat{DAB}+\widehat{ABC}+\widehat{ADC}+\widehat{BCD}=360^0\)
\(\Leftrightarrow2\cdot\left(\widehat{DAB}+\widehat{ADC}\right)=360^0\)
\(\Leftrightarrow\widehat{DAB}+\widehat{ADC}=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên AB//CD
Xét tứ giác ABCD có AB//CD
nên ABCD là hình thang
mà AC=BD
nên ABCD là hình thang cân