Biểu thức nào bằng nhau:
a + 1234 - 34567 a : 180
a - 456 + 24680 a :45
a * 135 : 3 a + 24224
a : 90 : 2 a - 33333
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a + 1234 - 34567 = a - 33333
a - 456 + 24680 = a + 24224
a x 135 : 3 = a x 45
Vậy các cặp bằng nhau là: a + 1234 - 34567 = a - 33333 ; a x 135 : 3 = a : 45 ; a - 456 + 24680 = a + 24224
a, \(\sqrt{\frac{2a}{3}}.\sqrt{\frac{3a}{8}}=\sqrt{\frac{6a^2}{24}}=\sqrt{\frac{a^2}{4}}=\left|\frac{a}{2}\right|=\frac{a}{2}\)
do \(a\ge0\)
b, \(\sqrt{13a}.\sqrt{\frac{52}{a}}=\sqrt{\frac{676a}{a}}=\sqrt{676}=26\)
c, \(\sqrt{5a}.\sqrt{45a}-3a=\sqrt{225a^2}-3a=\left|15a\right|-3a\)
\(=15a-3a=12a\)do a > 0
d, \(=\left(3-a\right)^2-\sqrt{0,2}.\sqrt{180a^2}\)
\(=\left(3-a\right)^2-\sqrt{36a^2}=\left(3-a\right)^2-\left|6a\right|\)
Với \(a\ge0\Rightarrow\left(3-a\right)^2-6a=a^2-6a+9-6a=a^2-12a+9\)
Với \(a< 0\Rightarrow\left(3-a\right)^2+6a=a^2-6a+9+6a=a^2+9\)
a) Ta có: \(\sqrt{27\cdot48\left(1-a^2\right)}\)
\(=\sqrt{3^4\cdot4^2\cdot\left(1-a^2\right)}\)
\(=36\sqrt{1-a^2}\)
c) Ta có: \(\sqrt{5a}\cdot\sqrt{45a}-3a\)
\(=15a-3a=12a\)
b) Ta có: \(B=\dfrac{1}{a-b}\cdot\sqrt{a^4\cdot\left(a-b\right)^2}\)
\(=\dfrac{1}{a-b}\cdot a^2\cdot\left(a-b\right)\)
\(=a^2\)
d) Ta có: \(D=\left(3-a\right)^2-\sqrt{0.2}\cdot\sqrt{180a^2}\)
\(=a^2-6a+9-\sqrt{36a^2}\)
\(=a^2-6a+9-\left|6a\right|\)
\(=\left[{}\begin{matrix}a^2-6a+9-6a\left(a\ge0\right)\\a^2-6a+9+6a\left(a< 0\right)\end{matrix}\right.\)
\(=\left[{}\begin{matrix}a^2-12a+9\\a^2+9\end{matrix}\right.\)
a/ \(\sqrt{\frac{2a}{3}}\cdot\sqrt{\frac{3a}{8}}\)
\(=\sqrt{\frac{2a}{3}\cdot\frac{3a}{8}}=\sqrt{\frac{6a^2}{24}}=\sqrt{\frac{a^2}{4}}=\sqrt{\frac{a^2}{2^2}}=\sqrt{\left(\frac{a}{2}\right)^2}=\left|\frac{a}{2}\right|\)
mak ta có \(a\ge0\)
\(\Rightarrow\left|\frac{a}{2}\right|=\frac{a}{2}\)\(\Rightarrow\sqrt{\frac{2a}{3}}\cdot\sqrt{\frac{3a}{8}}=\frac{a}{2}\)
b/ \(\sqrt{13a}\cdot\sqrt{\frac{52}{a}}\)
\(=\sqrt{13a\cdot\frac{52}{a}}=\sqrt{\frac{13a\cdot52}{a}}=\sqrt{13\cdot52}=\sqrt{13\cdot13\cdot4}=\sqrt{13^2\cdot2^2}=\sqrt{\left(13\cdot2\right)^2}=13\cdot2=26\)
c/ \(\sqrt{5a}\cdot\sqrt{45}-3a\)
\(=\sqrt{5a\cdot45a}-3a=\sqrt{5a\cdot5a\cdot9}-3a\)
\(=\sqrt{5^2\cdot a^2\cdot3^2}-3a=\left|5\cdot a\cdot3\right|-3a\)
\(=15\left|a\right|-3a\)
Có \(a\ge0\Rightarrow\left|a\right|=a\)
\(\Rightarrow15\left|a\right|-3a=15a-3a=12a\)
\(\Rightarrow\sqrt{5a}\cdot\sqrt{45}-3a=12a\)
d/ \(\left(3-a\right)^2-\sqrt{0,2}\cdot\sqrt{180a^2}\)
\(=\left(3-a\right)^2-\sqrt{0,2\cdot180a^2}\)
\(=\left(3-a\right)^2-\sqrt{0,2\cdot9\cdot2\cdot10\cdot a^2}\)
\(=\left(3-a\right)^2-\sqrt{4\cdot9\cdot a^2}\)
\(=\left(3-a\right)^2-\sqrt{2^2\cdot3^2\cdot a^2}\)
\(=\left(3-a\right)^2-\left|2\cdot3\cdot a\right|\)
\(=\left(3-a\right)^2-6\left|a\right|=9-6a+a^2-6\left|a\right|\)
Chia làm 2 Trường Hợp:
+ TH1 : \(9-6a+a^2-6a=9-12a+a^2\left(a\ge0\right)\)
+ TH2 : \(9-6a+a^2-\left(-6a\right)=9+a^2\left(a< 0\right)\)
\(A=\sqrt{9.3.3.16\left(1-a^2\right)}=3.3.4.\left|1-a\right|=36\left(a-1\right)\)
\(B=\frac{1}{a-b}a^2.\left|a-b\right|=\frac{a^2\left(a-b\right)}{a-b}=a^2\)
\(C=\sqrt{5.45.a^2}-3a=\sqrt{5^2.3^2.a^2}-3a=15\left|a\right|-3a=15a-3a=12a\)
\(D=\left(3-a\right)^2-\sqrt{\frac{2.180}{10}a^2}=\left(3-a\right)^2-6\left|a\right|\)
A. 90 000 + 30 000 + 5 473 = 120 000 + 5 473 = 125 473
B. 387 568 – (200 000 – 40 000) = 387 568 – 160 000 = 227 568
C. 456 250 + 200 000 + 500 000 = 656 250 + 500 000 = 1 156 250
D. 210 000 – 90 000 + 4 975 = 120 000 + 4 975 = 124 975
Ta có: 124 975 < 125 473 < 227 568 < 1 156 250.
Vậy biểu thức C có giá trị lớn nhất, biểu thức D có giá trị bé nhất.