M=[(2/193-3/386)x193/7+33/34]:[(7/2004+11/4002)x2001/25+9/2]
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
\(A=\left[\left(\frac{2}{193}-\frac{3}{386}\right).\frac{193}{17}+\frac{33}{34}\right]:\left[\left(\frac{7}{2001}+\frac{11}{4002}\right).\frac{2001}{25}+\frac{9}{2}\right]\)
\(=\left[\frac{1}{386}.\frac{193}{17}+\frac{33}{34}\right]:\left[\frac{25}{4002}.\frac{2001}{25}+\frac{9}{2}\right]\)
\(=\left[\frac{1}{34}+\frac{33}{34}\right]:\left[\frac{1}{2}+\frac{9}{2}\right]\)
\(=\frac{1}{5}\)
\(M=\left[\left(\dfrac{2}{193}-\dfrac{3}{386}\right)\cdot\dfrac{193}{17}+\dfrac{33}{34}\right]:\left[\left(\dfrac{7}{2001}+\dfrac{11}{4002}\right)\cdot\dfrac{2001}{25}+\dfrac{9}{2}\right]\)
\(M=\left[\left(\dfrac{4}{386}-\dfrac{3}{386}\right)\cdot\dfrac{193}{17}+\dfrac{33}{34}\right]:\left[\left(\dfrac{14}{4002}+\dfrac{11}{4002}\right)\cdot\dfrac{2001}{25}+\dfrac{9}{2}\right]\)
\(M=\left(\dfrac{1}{386}\cdot\dfrac{193}{17}+\dfrac{33}{34}\right):\left(\dfrac{25}{4002}\cdot\dfrac{2001}{25}+\dfrac{9}{2}\right)\)
\(M=\left(\dfrac{1}{34}+\dfrac{33}{34}\right):\left(\dfrac{1}{2}+\dfrac{9}{2}\right)\)
\(M=1:5\)
\(M=\dfrac{1}{5}\)
\(=\left[\dfrac{4-3}{386}\cdot\dfrac{193}{17}+\dfrac{33}{34}\right]:\left[\dfrac{25}{4002}\cdot\dfrac{2001}{25}+\dfrac{9}{2}\right]\)
\(=\left(\dfrac{1}{34}+\dfrac{33}{34}\right):\left[\dfrac{1}{2}+\dfrac{9}{2}\right]\)
=1/5
\(\left[\left(\frac{2}{193}-\frac{3}{386}\right).\frac{193}{17}+\frac{33}{34}\right]:\left[\left(\frac{7}{2001}+\frac{11}{4002}\right).\frac{2001}{25}+\frac{9}{2}\right]\)
\(=\left[\left(\frac{4}{368}-\frac{3}{368}\right).\frac{193}{17}+\frac{33}{34}\right]:\left[\left(\frac{14}{4002}+\frac{11}{4002}\right).\frac{2001}{25}+\frac{9}{2}\right]\)
\(=\left(\frac{1}{368}.\frac{193}{17}+\frac{33}{34}\right):\left(\frac{25}{4002}.\frac{2001}{25}+\frac{9}{2}\right)\)
\(=\left(\frac{1}{34}+\frac{33}{34}\right):\left(\frac{1}{2}+\frac{9}{2}\right)\)
\(=1:5=\frac{1}{5}\)
\(M=\left[\left(\frac{2}{193}-\frac{3}{386}\right).\frac{193}{17}+\frac{33}{34}\right]:\left[\left(\frac{7}{2001}+\frac{11}{4002}\right).\frac{2001}{25}+\frac{9}{2}\right] \)
\(=\left(\frac{2}{17}-\frac{3}{34}+\frac{33}{34}\right):\left(\frac{7}{25}+\frac{11}{50}+\frac{9}{2}\right)\)
\(=\frac{4-3+33}{34}:\frac{14+11+225}{50}=1:5=0.2\)
\(M=\left[\dfrac{4-3}{386}\cdot\dfrac{193}{17}+\dfrac{33}{34}\right]:\left[\dfrac{14+11}{4002}-\dfrac{2001}{25}+\dfrac{9}{2}\right]\)
\(=\left(\dfrac{1}{17}\cdot\dfrac{193}{386}+\dfrac{33}{34}\right):\left[\dfrac{25}{4002}-\dfrac{2001}{25}+\dfrac{9}{2}\right]\)
\(=1:\dfrac{625-2001\cdot4002+9\cdot50525}{100050}\)
\(=-\dfrac{100050}{7552652}\)
ta có
\(M=[(\dfrac{2}{193}-\dfrac{3}{386}).\dfrac{193}{17}+\dfrac{33}{34}]:[(\dfrac{7}{2001}+\dfrac{11}{4002}).\dfrac{2001}{25}+\dfrac{9}{2}]\)
\(\Rightarrow\)\(M=[\dfrac{1}{386}.\dfrac{193}{17}+\dfrac{33}{34}]:[\dfrac{25}{4002}.\dfrac{2001}{25}+\dfrac{9}{2}]\)
\(\Rightarrow\)\(M=[\dfrac{1}{34}+\dfrac{33}{34}]:[\dfrac{1}{2}+\dfrac{9}{2}]\)
\(\Rightarrow\)\(M=1:5\)
\(\Rightarrow M=\dfrac{1}{5}\)