cho tam giác ABC vuông ở A. kẻ đường cao AH từ đỉnh từ đỉnh góc vuông xuống cạnh huyền BC chứng minh
a/góc BAH= góc C
b/ góc CAH = góc B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABC vuông tại A
\(\Rightarrow\widehat{ABC}+\widehat{ACB}=90^o\) (1)
Tam giác ABH vuộng tại H
\(\Rightarrow\widehat{ABC}+\widehat{BAH}=90^o\) (2)
Từ (1) và (2) => \(\widehat{ACB}=\widehat{BAH}\)
Tam giác ACH vuông tại H
\(\Rightarrow\widehat{ACB}+\widehat{CAH}=90^o\) (3)
Từ (1) và (3) \(\Rightarrow\widehat{ABC}=\widehat{CAH}\)
a/ Xét tam giác AHB và tam giác AHC có:
AH chung
Góc AHB=AHC=90o
Góc ABC=ACB(Tam giác ABC cân tại A)
=> Tam giác AHB=tam giác AHC(ch-gn)
=> HB=HC(cạnh tương ứng) và Góc BAH=CAH(góc tương ứng)
b/ Xét tam giác AHD và tam giác AHE có:
AH chung
ADH=AEH=900
DAH=EAH(Góc tương ứng của tam giác AHB=tam giác AHC)
=> Tam giác AHD=tam giác AHE(ch-gn)
=> AD=AE(cạnh tương ứng) và DH=HE(cạnh tương ứng)
=> Tam giác HDE cân tại H.
hình tự vẽ
a)Xét tam giác AHB vuông ở H và tam giác AHC vuông ở H có:
AH:cạnh chung
AB=AC (gt)
=>tam giác AHB = tam giác AHC (ch-cgv)
=>HB = HC (cặp cạnh tương ứng)
và góc BAH = góc CAH (cặp góc tương ứng)
b)Vì góc BAH = góc CAH (cmt)
=>góc DAH = góc EAH
Xét tam giác AHD vuông tại D và tam giác AHE vuông tại E có:
AH:cạnh chung
góc DAH = góc EAH (cmt)
=>tam giác AHD = tam giác AHE (ch-gn)
=>AD = AE (cặp cạnh tương ứng)
và HD = HE (cặp cạnh tương ứng)
Xét tam giác HDE có: HD = HE (cmt)
=>tam giác HDE cân và cân ở H (DHNB tam giác cân)
c)Vì HB = HC (cmt)
Mà HB + HC = BC (vì H thuộc BC)
=>HB = HC = BC/2 = 16/2 = 8 (cm)
Xét tam giác AHB vuông tại H có: AH2+HB2 = AB2 (đ/l PyTaGo0
=>AH2 = AB2 - HB2 = 102 - 82 = 100 - 64 =36 = 62
=>AH = 6 (cm)
Ta có ΔABH = ΔACH (cmt)
Suy ra góc BAH = góc CAH (hai góc tương ứng)
Bạn vẽ hình nhé, hình dễ mà
a) Vì tam giác ABC cân tại A
=> AH vừa là đường cao vừa là đường trung tuyến (đồng thời cũng là phân giác) (1)
=> HB = HC
b) (cái phần trong ngoặc của câu a là để làm câu b)
Từ (1) ở a
=> Góc BAH = góc CAH
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
hay HB=HC
b: Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là đường phân giác
hay \(\widehat{BAH}=\widehat{CAH}\)
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
Suy ra: HD=HE
hay ΔHDE cân tại H
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
=>\(\widehat{BAH}=\widehat{CAH}\)
b: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
=>\(HB=HC=\dfrac{8}{2}=4\left(cm\right)\)
ΔAHC vuông tại H
=>\(AH^2+HC^2=AC^2\)
=>\(AC^2=3^2+4^2=25\)
=>\(AC=\sqrt{25}=5\left(cm\right)\)
c: Xét ΔAEH vuông tại E và ΔADH vuông tại D có
AH chung
\(\widehat{EAH}=\widehat{DAH}\)
Do đó: ΔAEH=ΔADH
=>AE=AD
d: Xét ΔABC có \(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)
nên ED//BC
a) Vì ΔABC vuông tại A(gt)
=> \(\widehat{B}+\widehat{C}=90\) (1)
Xét ΔABH vuông tại A(gt)
=> \(\widehat{B}+\widehat{BAH}=90\) (2)
Từ (1)(2) suy ra: \(\widehat{BAH}=\widehat{C}\)
b) Xét ΔAHC vuông tại H(gt)
=> \(\widehat{CAH}+\widehat{C}=90\) (3)
Từ (1)(3) suy ra: \(\widehat{CAH}=\widehat{B}\)
cho hình vẽ giúp mh nhé