K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2016

a) Tứ giác AKBC có:AB,KC là hai đường chéo cắt nhau tại D và

                      DA=DB(gt) 

                       DC=DK(gt)

=>Tứ giác AKBC là hình bình hành

=>AK=BC                           (1)

Tứ giác AICB có BI,AC là hai đường chéo cắt nhau tại E mà:

                          EA=EC(gt)

                          EB=EI(gt)

=>Tứ giác AICB là hình bình hành

=>AI=BC                     (2)

       Từ (1)(2) suy ra: AK=AI

=>A là trung điểm của KI

a)

Ta có: EB=EI(gt)

mà E nằm giữa hai điểm B và I

nên E là trung điểm của BI

Xét tứ giác AICB có

E là trung điểm của đường chéo AC(BE là đường trung tuyến ứng với cạnh AC trong ΔABC)

E là trung điểm của đường chéo BI(cmt)

Do đó: AICB là hình bình hành(dấu hiệu nhận biết hình bình hành)

⇒AI=BC và AI//BC(hai cạnh đối trong hình bình hành AICB)(1)

Ta có: DC=DK(gt)

mà D nằm giữa K và C

nên D là trung điểm của KC

Xét tứ giác AKBC có

D là trung điểm của đường chéo KC(cmt)

D là trung điểm của đường chéo AB(CD là đường trung tuyến ứng với cạnh AB của ΔABC)

Do đó: AKBC là hình bình hành(dấu hiệu nhận biết hình bình hành)

⇒AK//BC và AK=BC(hai cạnh đối trong hình bình hành AKBC)(2)

Từ (1) và (2) suy ra AK=AI(3)

Từ (1) và (2) suy ra AK//AI

mà AK và AI có điểm chung là A

nên K,A,I thẳng hàng(4)

Từ (3) và (4) suy ra A là trung điểm của KI(ddpcm)

b) Sửa đề: Chứng minh BI,CK,FA đồng quy tại một điểm

Ta có: AC//KB(hai cạnh đối trong hình bình hành ACBK)

mà F∈KB

nên AC//KF

Xét ΔIKF có

A là trung điểm của KI(cmt)

AC//KF(cmt)

Do đó: C là trung điểm của IF(định lí 1 đường trung bình của tam giác)

Ta có: CB//AK(cmt)

mà I∈AK

nên CB//KI

Xét ΔFIK có

C là trung điểm của FI(cmt)

CB//KI(cmt)

Do đó: B là trung điểm của KF(định lí 1 đường trung bình của tam giác)

Xét ΔFKI có

FA là đường trung tuyến ứng với cạnh KI(A là trung điểm của KI)

IB là đường trung tuyến ứng với cạnh KF(B là trung điểm của KF)

KC là đường trung tuyến ứng với cạnh IF(C là trung điểm của IF)

Do đó: FA,IB,KC cắt nhau tại trọng tâm của ΔFKI

hay FA,IB,KC đồng quy(đpcm)

a)

Ta có: EB=EI(gt)

mà E nằm giữa hai điểm B và I

nên E là trung điểm của BI

Xét tứ giác AICB có

E là trung điểm của đường chéo AC(BE là đường trung tuyến ứng với cạnh AC trong ΔABC)

E là trung điểm của đường chéo BI(cmt)

Do đó: AICB là hình bình hành(dấu hiệu nhận biết hình bình hành)

⇒AI=BC và AI//BC(hai cạnh đối trong hình bình hành AICB)(1)

Ta có: DC=DK(gt)

mà D nằm giữa K và C

nên D là trung điểm của KC

Xét tứ giác AKBC có

D là trung điểm của đường chéo KC(cmt)

D là trung điểm của đường chéo AB(CD là đường trung tuyến ứng với cạnh AB của ΔABC)

Do đó: AKBC là hình bình hành(dấu hiệu nhận biết hình bình hành)

⇒AK//BC và AK=BC(hai cạnh đối trong hình bình hành AKBC)(2)

Từ (1) và (2) suy ra AK=AI(3)

Từ (1) và (2) suy ra AK//AI

mà AK và AI có điểm chung là A

nên K,A,I thẳng hàng(4)

Từ (3) và (4) suy ra A là trung điểm của KI(ddpcm)

b) Sửa đề: Chứng minh BI,CK,FA đồng quy tại một điểm

Ta có: AC//KB(hai cạnh đối trong hình bình hành ACBK)

mà F∈KB

nên AC//KF

Xét ΔIKF có

A là trung điểm của KI(cmt)

AC//KF(cmt)

Do đó: C là trung điểm của IF(định lí 1 đường trung bình của tam giác)

Ta có: CB//AK(cmt)

mà I∈AK

nên CB//KI

Xét ΔFIK có

C là trung điểm của FI(cmt)

CB//KI(cmt)

Do đó: B là trung điểm của KF(định lí 1 đường trung bình của tam giác)

Xét ΔFKI có

FA là đường trung tuyến ứng với cạnh KI(A là trung điểm của KI)

IB là đường trung tuyến ứng với cạnh KF(B là trung điểm của KF)

KC là đường trung tuyến ứng với cạnh IF(C là trung điểm của IF)

Do đó: FA,IB,KC cắt nhau tại trọng tâm của ΔFKI

hay FA,IB,KC đồng quy(đpcm)

30 tháng 5 2020

Lp 7 đc dùng hình bình hành luôn ạ???

a)

Ta có: EB=EI(gt)

mà E nằm giữa hai điểm B và I

nên E là trung điểm của BI

Xét tứ giác AICB có

E là trung điểm của đường chéo AC(BE là đường trung tuyến ứng với cạnh AC trong ΔABC)

E là trung điểm của đường chéo BI(cmt)

Do đó: AICB là hình bình hành(dấu hiệu nhận biết hình bình hành)

⇒AI=BC và AI//BC(hai cạnh đối trong hình bình hành AICB)(1)

Ta có: DC=DK(gt)

mà D nằm giữa K và C

nên D là trung điểm của KC

Xét tứ giác AKBC có

D là trung điểm của đường chéo KC(cmt)

D là trung điểm của đường chéo AB(CD là đường trung tuyến ứng với cạnh AB của ΔABC)

Do đó: AKBC là hình bình hành(dấu hiệu nhận biết hình bình hành)

⇒AK//BC và AK=BC(hai cạnh đối trong hình bình hành AKBC)(2)

Từ (1) và (2) suy ra AK=AI(3)

Từ (1) và (2) suy ra AK//AI

mà AK và AI có điểm chung là A

nên K,A,I thẳng hàng(4)

Từ (3) và (4) suy ra A là trung điểm của KI(ddpcm)

b) Sửa đề: Chứng minh BI,CK,FA đồng quy tại một điểm

Ta có: AC//KB(hai cạnh đối trong hình bình hành ACBK)

mà F∈KB

nên AC//KF

Xét ΔIKF có

A là trung điểm của KI(cmt)

AC//KF(cmt)

Do đó: C là trung điểm của IF(định lí 1 đường trung bình của tam giác)

Ta có: CB//AK(cmt)

mà I∈AK

nên CB//KI

Xét ΔFIK có

C là trung điểm của FI(cmt)

CB//KI(cmt)

Do đó: B là trung điểm của KF(định lí 1 đường trung bình của tam giác)

Xét ΔFKI có

FA là đường trung tuyến ứng với cạnh KI(A là trung điểm của KI)

IB là đường trung tuyến ứng với cạnh KF(B là trung điểm của KF)

KC là đường trung tuyến ứng với cạnh IF(C là trung điểm của IF)

Do đó: FA,IB,KC cắt nhau tại trọng tâm của ΔFKI

hay FA,IB,KC đồng quy(đpcm)

a)

Ta có: EB=EI(gt)

mà E nằm giữa hai điểm B và I

nên E là trung điểm của BI

Xét tứ giác AICB có

E là trung điểm của đường chéo AC(BE là đường trung tuyến ứng với cạnh AC trong ΔABC)

E là trung điểm của đường chéo BI(cmt)

Do đó: AICB là hình bình hành(dấu hiệu nhận biết hình bình hành)

⇒AI=BC và AI//BC(hai cạnh đối trong hình bình hành AICB)(1)

Ta có: DC=DK(gt)

mà D nằm giữa K và C

nên D là trung điểm của KC

Xét tứ giác AKBC có

D là trung điểm của đường chéo KC(cmt)

D là trung điểm của đường chéo AB(CD là đường trung tuyến ứng với cạnh AB của ΔABC)

Do đó: AKBC là hình bình hành(dấu hiệu nhận biết hình bình hành)

⇒AK//BC và AK=BC(hai cạnh đối trong hình bình hành AKBC)(2)

Từ (1) và (2) suy ra AK=AI(3)

Từ (1) và (2) suy ra AK//AI

mà AK và AI có điểm chung là A

nên K,A,I thẳng hàng(4)

Từ (3) và (4) suy ra A là trung điểm của KI(ddpcm)

b) Sửa đề: Chứng minh BI,CK,FA đồng quy tại một điểm

Ta có: AC//KB(hai cạnh đối trong hình bình hành ACBK)

mà F∈KB

nên AC//KF

Xét ΔIKF có

A là trung điểm của KI(cmt)

AC//KF(cmt)

Do đó: C là trung điểm của IF(định lí 1 đường trung bình của tam giác)

Ta có: CB//AK(cmt)

mà I∈AK

nên CB//KI

Xét ΔFIK có

C là trung điểm của FI(cmt)

CB//KI(cmt)

Do đó: B là trung điểm của KF(định lí 1 đường trung bình của tam giác)

Xét ΔFKI có

FA là đường trung tuyến ứng với cạnh KI(A là trung điểm của KI)

IB là đường trung tuyến ứng với cạnh KF(B là trung điểm của KF)

KC là đường trung tuyến ứng với cạnh IF(C là trung điểm của IF)

Do đó: FA,IB,KC cắt nhau tại trọng tâm của ΔFKI

hay FA,IB,KC đồng quy(đpcm)

21 tháng 10 2023

a: Xét ΔABK và ΔCDK có

KA=KC

\(\widehat{AKB}=\widehat{CKD}\)

KB=KD

Do đó: ΔABK=ΔCDK

b: ΔABK=ΔCDK

=>\(\widehat{KAB}=\widehat{KCD}\)

mà hai góc này ở vị trí so le trong

nên AB//CD
c: ΔABK=ΔCDK

=>AB=CD

mà CD=CE
nên AB=CE

AB//CD

=>AB//CE

Xét tứ giác ABEC có

AB//CE

AB=CE

Do đó: ABEC là hình bình hành

=>AC=BE

d: Xét ΔABC có

I,K lần lượt là trung điểm của CB,CA

=>IK là đường trung bình của ΔABC

=>IK//AB

mà AB//DE

nên IK//DE

Xét ΔBCE có

M,I lần lượt là trung điểm của BE,BC

=>MI là đường trung bình của ΔBCE
=>MI//CE

=>MI//DE
MI//DE

KI//DE

mà MI,KI có điểm chung là I

nên M,I,K thẳng hàng

5 tháng 7 2017

A B C D E F

A B C D E

8 tháng 6 2023

A B C D E I

a) chứng minh \(\Delta ABC=\Delta ADC\)

xét 2 tam giác vuông ABC và ADC:

có AC: cạnh chung

AD=AB (gia thiết) 

=> \(\Delta ABC=\Delta ADC\) (2cgv)

 

b) chứng minh DC//BE

xét tứ giác BEDC có 2 đường chéo BD và EC cắt nhau tại trung điểm A của mỗi đường => tứ giác BEDC là hình bình hành => DC//BE

 

c) chứng minh BE = 2AI

ta có BEDC là hình bình hành => BE=DC

lại có tam giác DAC vuông tại A => đường trung tuyến AI bằng một nửa cạnh huyền, tức là \(AI=\dfrac{1}{2}DC\) hay \(DC=2.AI\) hay \(BE=2.AI\)

chúc em học tốt

8 tháng 6 2023

Cậu tự vẽ hình nhé.

a,  Xét \(\Delta ABC\) vuông tại A và \(\Delta ADC\) vuông tại A có:

                       AB = AD(gt)

                       AC chung 

          \(\Rightarrow\Delta ABC=\Delta ADC\left(ch-cgv\right)\)

b, Ta có \(DB\perp EC\) tại \(A\)

 mà \(DA=AB\left(gt\right)\)

        \(AE=AC\left(gt\right)\)

\(\Rightarrow\) Tứ giác DCBE là hình thoi ( 2 đường chéo vuông góc với nhau và cắt nhau tại trung điểm mỗi đường )

\(\Rightarrow DC//BE\) ( tính chất hình thoi )

c,   Xét \(\Delta DAC\) vuông tại A có:

      I là trung điểm của DC 

 \(\Rightarrow AI=DI=IC=\dfrac{1}{2}DC\)

\(\Rightarrow2AI=DC\) 

Lại có DC = EB ( DCBE là hình thoi )

\(\Rightarrow2AI=BE\)

a: AC=12cm

Xét ΔABC có AB<AC<BC

nên \(\widehat{C}< \widehat{B}< \widehat{A}\)

b: Xét ΔCBD có 

CA là đường cao

CA là đường trung tuyến

Do đó: ΔCBD cân tại C

Suy ra: CB=CD