K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2016

Ta có (x+1)\(\ge0\)\(\ge\) với mọi x

=> 5(x+1)\(\ge0\) với mọi

|y-3| \(\ge0\) với mọi y

=>5(x+1)2+|y-3| \(\ge0\) với mọi x,y

=>5(x+1)2+|y-3|-1 \(\ge-1\)

với mọi x,y

=> GTNN của biểu thức trên là -1 tại x=-1, y =3

a: \(A\ge-5\forall x,y\)

Dấu '=' xảy ra khi x=2 và y=-1

20 tháng 9 2018

a, x(y + 2) = 5

=> x; y + 2 thuộc Ư(5) = {-1; 1; -5; 5}

ta có bảng :

x-11-55
y+2-55-11
y-731-1

vậy_

b, c tương tự

1 tháng 6 2016

trả hiểu cái gì cả

1 tháng 6 2016

trả hiểu cái gì cả

13 tháng 11 2019

Giá trị tuyệt đối của một số hữu tỉ cộng, trừ, nhân, chia số thập phânGiá trị tuyệt đối của một số hữu tỉ cộng, trừ, nhân, chia số thập phân

13 tháng 11 2019

a, \(A=\left|x+1\right|+\left|y-2\right|\)

\(A=\left|x+1\right|+\left|5-x-2\right|\)

\(A=\left|x+1\right|+\left|3-x\right|\ge x+1+3-x=4\)

Dấu " = " sảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x+1\ge0\\3-x\ge0\end{matrix}\right.\Leftrightarrow-1\le x\le3\)

30 tháng 9 2018

A=(x+1)(x+2)(x+3)(x+4)=(x+1)(x+4)(x+2)(x+3)=(x^2+5x+4)(x^2+5x+6)

Đặt x^2+5x=t =>A=(t+4)(t+6)=t^2+10t+24=(t+5)^2-1 lớn hơn hoặc bằng -1 

Dấu bằng xảy ra khi t=-5 từ đó giải ra x

mik chỉ nghĩ đc cái này thôi

(x+1)(x+2)(x+3)(x+4)

30 tháng 9 2018

mơn bn nhennnn

NV
12 tháng 4 2020

Câu 2:

\(A-4=2x+3y\Rightarrow\left(A-4\right)^2=\left(2x+3y\right)^2\)

\(\left(A-4\right)^2\le\left(2^2+3^2\right)\left(x^2+y^2\right)=676\)

\(\Rightarrow-26\le A-4\le26\)

\(\Rightarrow-22\le A\le30\)

\(A_{max}=30\) khi \(\left\{{}\begin{matrix}x=4\\y=6\end{matrix}\right.\)

\(A_{min}=-22\) khi \(\left\{{}\begin{matrix}x=-4\\y=-6\end{matrix}\right.\)

NV
12 tháng 4 2020

\(2x+3y=1\Rightarrow y=\frac{1-2x}{3}\)

Do \(x;y\ge0\Rightarrow0\le x\le\frac{1}{2}\)

\(A=x^2+3\left(\frac{1-2x}{3}\right)^2=x^2+\frac{1}{3}\left(4x^2-4x+1\right)=\frac{7}{3}x^2-\frac{4}{3}x+\frac{1}{3}\)

\(A=\frac{7}{3}\left(x-\frac{2}{7}\right)^2+\frac{1}{7}\ge\frac{1}{7}\)

\(\Rightarrow A_{min}=\frac{1}{7}\) khi \(x=\frac{2}{7};y=\frac{1}{7}\)

Mặt khác \(A=\frac{1}{3}x\left(7x-4\right)+\frac{1}{3}\)

Do \(x\le\frac{1}{2}\Rightarrow7x-4< 0\Rightarrow x\left(7x-4\right)\le0\)

\(\Rightarrow A\le\frac{1}{3}\Rightarrow A_{max}=\frac{1}{3}\) khi \(x=0;y=\frac{1}{3}\)