Cho tam giác ABC vuông tại A,đường cao AH.Gọi E,J,K theo thứ tự là giao điểm của các đg phân giác của tam giác ABC,ABH,ACH.CM BE vuông góc với AK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi giao điểm của BI và AQ là M.
Ta thấy \(\widehat{AIM}=\widehat{BAI}+\widehat{ABI}=\frac{\widehat{BAH}}{2}+\frac{\widehat{ABC}}{2}=\frac{\widehat{BAH}+\widehat{ABC}}{2}=\frac{90^o}{2}=45^o\)
Ta cũng có \(\widehat{IAM}=\widehat{IAK}+\widehat{KAM}=\frac{\widehat{BAH}}{2}+\frac{\widehat{HAC}}{2}=\frac{\widehat{BAH}+\widehat{HAC}}{2}=\frac{90^o}{2}=45^o\)
Vậy thì \(\widehat{AMI}=90^o\Rightarrow IK\perp AQ\)
Hoàn toàn tương tự \(QK\perp AI\)
Vậy K là trực tâm tam giác AQI.
b) Ta có \(\widehat{KQM}=\widehat{QAC}+\widehat{QCA}=\frac{\widehat{HAC}}{2}+\frac{\widehat{ACH}}{2}=\frac{\widehat{HAC}+\widehat{ACH}}{2}=\frac{90^o}{2}=45^o\)
Xét tam giác vuông KMQ có \(\widehat{KQM}=45^o\Rightarrow\) KMQ là tam giác cân tại M hay MK = MQ.
Theo a, MA = MI vậy nên \(\Delta AMK=\Delta IMQ\left(c-g-c\right)\Rightarrow AK=IQ\left(đpcm\right).\)
sử dụng t/c đường phân giác của tam giác nhé rùi còn nữa nhưng chưa nghĩ ra hihi !!!!!!!!!!!!!!!!!!!!!
76967867
Bạn tham khảo lời giải tại đây:
https://hoc24.vn/cau-hoi/cho-tam-giac-abc-vuong-o-a-duong-cao-ah-phan-giac-ad-goi-i-j-lan-luot-la-cac-giao-diem-cac-duong-phan-giac-cua-tam-giac-abh-ach-e-la-giao-diem-c.8915069447339
giup voi huhu
Dễ thấy B,J,E thẳng hàng và C,K,E thẳng hàng
Gọi M là giao điểm AK với BC
Ta có: AMB = MAC + MCB = MAH + BAH = BAM
Do đó tam giác ABM cân tại B
Mà BJ là tia phân giác nên cũng là đường cao nên BJ vuông góc AM
Tương tự CE vuông góc AJ
Tam giác AJK có JE và KE là đường cao nên AE cũng là đường cao hay AE vuông góc JK
Vì AE vuông góc với JK => BE vuông góc với AK