K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2016

\(x^2+5x+6=0\)

\(\Rightarrow x^2+2x+3x+6=0\)

\(\Rightarrow x\left(x+2\right)+3\left(x+2\right)=0\)

\(\Rightarrow\left(x+2\right)\left(x+3\right)=0\)

\(\Rightarrow\left[\begin{array}{nghiempt}x+2=0\\x+3=0\end{array}\right.\)

\(\Rightarrow\left[\begin{array}{nghiempt}-2\\-3\end{array}\right.\)

Vậy x = -2 và x = -3

21 tháng 7 2016

Ta có: \(x^2+5x+6=0\)

<=> \(\left(x^2+2x\right)+\left(3x+6\right)=0\)

<=> \(\left(x+2\right)\left(x+3\right)=0\)

<=> \(\left[\begin{array}{nghiempt}x+2=0\\x+3=0\end{array}\right.\)

<=> \(\left[\begin{array}{nghiempt}x=-2\\x=-3\end{array}\right.\)

Vậy x\(\in\left\{-3;-2\right\}\)

22 tháng 7 2016

\(x^2+5x+6=0\)

\(\Leftrightarrow\left(x^2+2x\right)+\left(3x+6\right)=0\)

\(\Leftrightarrow x\left(x+2\right)+3\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-3\end{cases}}}\)

22 tháng 7 2016

x^2+2x+3x+6=0

x(x+2)+3(x+2)=0

(x+3)(x+2)=0

=> x= - 3 hoac -2

9 tháng 10 2021

\(a,\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-\dfrac{1}{2}\end{matrix}\right.\\ b,\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\\ c,\Leftrightarrow2x^2-10x-3x-2x^2=26\\ \Leftrightarrow-13x=26\Leftrightarrow x=-2\\ d,\Leftrightarrow x^2-18x+16=0\\ \Leftrightarrow\left(x^2-18x+81\right)-65=0\\ \Leftrightarrow\left(x-9\right)^2-65=0\\ \Leftrightarrow\left(x-9+\sqrt{65}\right)\left(x-9-\sqrt{65}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=9-\sqrt{65}\\9+\sqrt{65}\end{matrix}\right.\)

\(e,\Leftrightarrow x^2-10x-25=0\\ \Leftrightarrow\left(x-5\right)^2-50=0\\ \Leftrightarrow\left(x-5-5\sqrt{2}\right)\left(x-5+5\sqrt{2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5+5\sqrt{2}\\x=5-5\sqrt{2}\end{matrix}\right.\\ f,\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\\ g,\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\\ \Leftrightarrow\left(2-x\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\\ h,\Leftrightarrow x^2+2x+3x+6=0\\ \Leftrightarrow\left(x+3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\\ i,\Leftrightarrow4x^2-12x+9-4x^2+4=49\\ \Leftrightarrow-12x=36\Leftrightarrow x=-3\)

\(j,\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\\ k,\Leftrightarrow x^2\left(x-1\right)=4\left(x-1\right)^2\\ \Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

25 tháng 12 2020

\(\Leftrightarrow\left\{{}\begin{matrix}x^3+2y^2-4y+3=0\\2x^2+2x^2y^2-4y=0\left(1\right)\end{matrix}\right.\Rightarrow}x^3+2y^2-4y-2x^2-2x^2y^2+4y=0\Rightarrow x^3+1-2x^2y^2+2y^2-2x^2+2=0\Rightarrow\left(x+1\right)\left(x^2-x+1\right)-2y^2\left(x-1\right)\left(x+1\right)-2\left(x-1\right)\left(x+1\right)=0\Rightarrow\left(x+1\right)\left(x^2-x+1-2xy^2+2y^2-2x+2\right)=0\Rightarrow x=-1\)Thay x=-1 vào (1) ta được y2-2y+1=0⇒ (y-1)2=0⇒y-1=0⇒y=1

Do đó Q=x2+y2=(-1)2+12=2

9 tháng 10 2021

a)=\(3x^3-15x^2+21x\)

b)\(=-2x^4y-10x^2y+2xy\)

c)\(=-x^3+6x^2+5x-4x^2+24x+20=-x^3+2x^2+29x+20\)

d)\(=2x^4-3x^3+4x^2-2x^2+3x-4=2x^4-3x^32x^2+3x-4\)

e)\(=x^2-4y^2\)

f)\(=-2x^2y^3+y-3\)

g)\(=3xy^4-\dfrac{1}{2}y^2+2x^2y\)

h)\(=9x^2-6x+1-7x^2-14=2x^2-6x-13\)

i)\(=x^2-x-3\)

j)\(=\left(x+2y\right)\left(x^2-2y+4y^2\right):\left(x+2y\right)=x^2-2y+4y^2\)

24 tháng 10 2021

Tại sao ý b có dấu - trước ngoặc đâu mà đổi dấu mong bn giải đáp

19 tháng 6 2022

\(\left(x^2-5x+8\right)^2-\left(5x-17\right)^2=0\)

\(\Leftrightarrow\left(x^2-5x+8-5x+17\right)\left(x^2-5x+8+5x-17\right)=0\)

\(\Leftrightarrow\left(x^2-10x+25\right)\left(x^2-9\right)=0\)

\(\Leftrightarrow\left(x^2-5x-5x+25\right)\left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[x\left(x-5\right)-5\left(x-5\right)\right]\left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(x-5\right)^2.\left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-5\right)^2=0\\x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=3\\x=-3\end{matrix}\right.\)