Tìm x, y biết:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
8) 35x=21y=15z và x+y-z=9
\(\frac{35x}{105}\)=\(\frac{21y}{105}\)=\(\frac{15z}{105}\)=>\(\frac{x}{3}\)=\(\frac{y}{5}\)=\(\frac{z}{7}\)và x+y-z=9
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}\)=\(\frac{y}{5}\)=\(\frac{z}{7}\)=\(\frac{x+y-z}{3+5-7}\)=\(\frac{9}{1}\)=9
Do đó
\(\frac{x}{3}\)=9=> x=3.9=27
\(\frac{y}{5}\)=9 => y=5.9=45
\(\frac{z}{7}\)=9 =>z=7.9=63
Vậy x=27; y=45; z=63
8. =>\(\frac{x}{35}=\frac{y}{21}=\frac{z}{15}=>\frac{x+y-z}{35+21-15}=\frac{9}{41}\)
=>\(\frac{x}{35}=\frac{9}{41}=>x=\frac{315}{41}\)
=>\(\frac{y}{21}=\frac{9}{41}=>y=\frac{189}{41}\)
=>\(\frac{z}{15}=\frac{9}{41}=>z=\frac{135}{41}\)
vậy :\(x=\frac{315}{41};y=\frac{189}{41};z=\frac{135}{41}\)
9. =>\(\frac{x}{10}=\frac{y}{6}=\frac{z}{5}=>\frac{x+y-z}{10+6-5}=\frac{24}{11}\)
=>\(\frac{x}{10}=\frac{24}{11}=>x=\frac{240}{11}\)
=>\(\frac{y}{6}=\frac{24}{11}=>y=\frac{144}{11}\)
=>\(\frac{z}{5}=\frac{24}{11}=>z=\frac{120}{11}\)
vậy :\(x=\frac{240}{11};y=\frac{144}{11};z=\frac{120}{11}\)
Ta có: \(10x=6y=5z\Leftrightarrow\frac{x}{\frac{1}{10}}=\frac{y}{\frac{1}{6}}=\frac{z}{\frac{1}{5}}\) và \(x+y-z=24\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{1}{10}}=\frac{y}{\frac{1}{6}}=\frac{z}{\frac{1}{5}}=\frac{x+y-z}{\frac{1}{10}+\frac{1}{6}-\frac{1}{5}}=24:\frac{1}{15}=360\)
=> x = 360 : 10 = 36
y = 360 : 6 = 60
z = 360 : 5 = 72
1) \(35x=21y\Rightarrow\frac{21}{35}=\frac{x}{y}=\frac{3}{5}=>\frac{x}{3}=\frac{y}{5}\) (1)
\(21y=15z\Rightarrow\frac{15}{21}=\frac{y}{z}=\frac{5}{7}\Rightarrow\frac{y}{5}=\frac{z}{7}\)(2)
Từ (1) và (2) => \(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=\frac{x+y-z}{3+5-7}=\frac{27}{1}=27\)
=> \(\frac{x}{3}=27\Rightarrow x=27.3=81\)
\(\frac{y}{5}=27\Rightarrow y=27.5=135\)
\(\frac{z}{7}=27\Rightarrow z=27.7=189\)
2) \(10x=6y\Rightarrow\frac{6}{10}=\frac{x}{y}=\frac{3}{5}\Rightarrow\frac{x}{3}=\frac{y}{5}\) (1)
\(6y=5z\Rightarrow\frac{5}{6}=\frac{y}{z}\Rightarrow\frac{y}{5}=\frac{z}{6}\)(2)
Từ (1) và (2) => \(\frac{x}{3}=\frac{y}{5}=\frac{z}{6}\)
(còn phần dưới thì tự tính ra x, y, z đc rồi đó ^^)
8/\(35x=21y=15z\)=>\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}\)
Áp dụng t/c của dãy tỉ số ằng nhau,ta có:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{x+y-z}{3+5-7}=\dfrac{9}{1}=9\)
=>x=27;y=45;z=63
9/\(10x=6y=5z\)=>\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}\)
Áp dụng t/c của dãy tỉ số ằng nhau,ta có:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{x+y-z}{3+5-6}=\dfrac{24}{2}=12\)
=>x=36;y=60;z=72
a) \(\dfrac{3x-4}{2x+5}=\dfrac{3x+7}{2x-20}\left(đk:x\ne-\dfrac{5}{2},x\ne10\right)\)
\(\Rightarrow\left(3x-4\right)\left(2x-20\right)=\left(3x+7\right)\left(2x+5\right)\)
\(\Rightarrow6x^2-68x+80=6x^2+29x+35\)
\(\Rightarrow97x=45\Rightarrow x=\dfrac{45}{97}\)
b) \(\dfrac{10x-5}{7x+2}=\dfrac{50x+10}{35x-29}\left(đk:x\ne-\dfrac{2}{7},x\ne\dfrac{29}{35}\right)\)
\(\Rightarrow\left(10x-5\right)\left(35x-29\right)=\left(50x+10\right)\left(7x+2\right)\)
\(\Rightarrow350x^2-465x+145=350x^2+170x+20\)
\(\Rightarrow635x=125\Rightarrow x=\dfrac{25}{127}\)
\(3x^4-20x^3+35x^2+10x-48=0\)
\(\Leftrightarrow\left(x^2-2x-3\right)\left(3x^2-14x+16\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-3\right)\left(3x-8\right)\left(x-2\right)=0\)
\(\Rightarrow x=\left\{-1;3;\frac{8}{3};2\right\}\)
a)khi x=8 thì y=15
=> 8.15=120
Vậy hai đại lượng x và y tỉ lệ nghịch với nhau theo hệ số tỉ lệ là 120.
b) biểu diễn x theo y:
y=a/c=> y=120/8=>a=8.15
c) khi x =6
=>y=120/6
=>y=20
Khi x=10
=>y=120:10
=>y=12.
a) Luỹ thừa các số có tận cùng là chữ số 5 sẽ tận cùng bằng 5
Do đó 2.5y sẽ tận cùng bằng 0 => 35x + 9 sẽ tận cùng bằng chữ số 0 => 35 x tận cùng bằng chữ số 1 => x= 0 => 2.5 y = 10 => y=1
Vậy x = 0, y=1