Tính hợp lý:
\(\frac{1}{3}\)-\(\frac{3}{4}-\left(-\frac{3}{5}\right)+\frac{1}{64}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1/3 -. 3 /4 + 3/5 + 1/64 -2/ 9 - 1 /36 +1/ 15
A = ( 1 /3 +3 /5 +1/ 15) - ( 3/4 -2/9 -1/ 36) + 1/64
A =1-1 +1/64 = 1/64
Muốn cho số có hai chữ số giống nhau và chia hết cho 2 thì số đó phải là một trong các số 22, 44, 66, 88. Bây giờ ta tìm trong những số này số mà chia cho 5 thì dư 3.
Đó là số 88.
Xem thêm tại: http://loigiaihay.com/bai-99-trang-39-sgk-toan-6-tap-1-c41a3896.html#ixzz4xczZ4dOb
a) \(\frac{-1}{2}+\frac{-1}{9}-\frac{-3}{5}+\frac{1}{2006}-\frac{-2}{7}-\frac{7}{18}+\frac{4}{35}\)
\(=\left(\frac{-1}{2}-\frac{1}{9}-\frac{7}{18}\right)+\left(\frac{3}{5}+\frac{4}{35}\right)+\frac{1}{2006}\)
\(=\left(\frac{-9}{18}-\frac{2}{18}-\frac{7}{18}\right)+\left(\frac{21}{35}+\frac{4}{35}\right)+\frac{1}{2006}\)
\(=\left(\frac{-9-2-7}{18}\right)+\left(\frac{21+4}{35}\right)+\frac{1}{2006}\)
\(=\left(\frac{-18}{18}\right)+\left(\frac{25}{35}\right)+\frac{1}{2006}\)
\(=\left(-1\right)+\frac{5}{7}+\frac{1}{2006}\)\(=\frac{-4005}{14042}\)
b) \(\frac{1}{3}-\frac{3}{4}+\frac{3}{5}+\frac{1}{2007}-\frac{1}{36}+\frac{1}{15}-\frac{2}{9}\)
\(=\left(\frac{1}{3}+\frac{1}{2007}-\frac{2}{9}\right)-\left(\frac{3}{4}+\frac{1}{36}\right)+\left(\frac{3}{5}+\frac{1}{15}\right)\)
\(=\left(\frac{669}{2007}+\frac{1}{2007}-\frac{446}{2007}\right)-\left(\frac{27}{36}+\frac{1}{36}\right)+\left(\frac{9}{15}+\frac{1}{15}\right)\)
\(=\frac{224}{2007}-\frac{28}{36}+\frac{10}{15}\)
\(=\frac{224}{2007}-\frac{1561}{2007}+\frac{1338}{2007}\)\(=\frac{1}{2007}\)
Câu a) bạn tham khảo tại đây nhé: Câu hỏi của Hằng Thanh.
Chúc bạn học tốt!
\(=\frac{1}{3}-\frac{3}{4}+\frac{3}{5}+\frac{1}{64}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}=\left(\frac{1}{3}+\frac{3}{5}+\frac{1}{15}\right)+\left(-\frac{3}{4}-\frac{2}{9}-\frac{1}{36}\right)+\frac{1}{64}\)
= 1 + -1 + 1/64
= 0 +1/64
= 1/64
\(B=\frac{1}{3}-\frac{3}{4}+0,6+\frac{1}{64}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}\)
\(\Rightarrow B=\frac{3}{15}-\frac{48}{64}+\frac{9}{15}+\frac{1}{64}-\frac{8}{36}-\frac{1}{36}+\frac{1}{15}\)
\(\Rightarrow B=\frac{3}{15}+\frac{9}{15}+\frac{1}{15}+\left(-\frac{48}{64}+\frac{1}{64}\right)+\left(-\frac{8}{36}-\frac{1}{36}\right)\)
\(\Rightarrow B=\frac{13}{15}-\frac{47}{64}-\frac{1}{4}\)
\(\Rightarrow B=-\frac{113}{960}\)
\(C=0\)
\(D=\frac{1}{99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(\Rightarrow D=\frac{1}{99}-\frac{1}{99}+\frac{1}{98}-\frac{1}{98}+...-\frac{1}{3}+\frac{1}{2}-\frac{1}{2}+1\)
\(\Rightarrow D=1\)
D= \(\frac{1}{99}-\frac{1}{99.98}-\frac{1}{98.97}......-\frac{1}{3.2}-\frac{1}{2.1}\)
=\(\frac{1}{99}-\left(\frac{1}{1.2}+\frac{1}{2.3}+.......+\frac{1}{97.98}+\frac{1}{98.99}\right)\)
=\(\frac{1}{99}-\left(1-\frac{1}{2}+\frac{1}{2}-.....-\frac{1}{98}-\frac{1}{99}\right)\)
=\(\frac{1}{99}-\left[1-(\frac{1}{2}-\frac{1}{2}+......+\frac{1}{98}-\frac{1}{99})\right]\)
=\(\frac{1}{99}-\left(1-0-0-.....-0-\frac{1}{99}\right)\)
=\(\frac{1}{99}-1-\frac{1}{99}\)
=1