K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

Suy ra: \(\widehat{BAH}=\widehat{CAH}\)

Đề sai rồi bạn

20 tháng 4 2017

Ta có ΔABH = ΔACH (cmt)

Suy ra góc BAH = góc CAH (hai góc tương ứng)

a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

hay HB=HC

b: Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là đường phân giác

hay \(\widehat{BAH}=\widehat{CAH}\)

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó: ΔADH=ΔAEH

Suy ra: HD=HE

hay ΔHDE cân tại H

26 tháng 2 2021

* Vẽ hình hộ mình nha !!!

a) Xét tam giác ABH và tam giác ACH vuông tại H có:

+) AB = AC (chứng minh trên)

+) Góc B = góc C (cmt)

=> Tam giác ABH = tam giác ACH (cạnh huyền - góc nhọn)

=> HB = HC (2 cạnh tương ứng)

b)  Vì tam giác ABH = tam giác ACH nên:

=> Góc BAH = góc CAH (2 góc tương ứng)

8 tháng 1 2018

hình bạn tự vẽ

a/  xét 2 tam giác vuông ABH và ACH,có:

AB=AC(gt),AH chung  =>tam giác vuông ABH=tam giác vuông ACH

=>HB=HC(t/ứng)

b/   Vì tam giác vuông BAH=tam giác vuông ACH(cmt)    =>\(\widehat{BAH}\)=\(\widehat{CAH}\)(t/ứng)

17 tháng 4 2020

cau1  =2     cau2    =102

a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

hay HB=HC 

Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là đường phân giác

hay \(\widehat{BAH}=\widehat{CAH}\)

b: BH=CH=BC/2=4(cm)

nên AH=3(cm)

c: Xét ΔAEH vuông tại E và ΔADH vuông tại D có

AH chung

\(\widehat{EAH}=\widehat{DAH}\)

DO đó: ΔAEH=ΔADH

Suy ra: HE=HD

hay ΔHDE cân tại H

25 tháng 12 2022

bạn ơi, cho mình xem hình vẽ với

 

17 tháng 4 2022

a) Xét tam giác ABH và tam giác ACH có:

\(\widehat{AHB}=\widehat{AHC}=90^0\) (gt)

\(AB=AC\) (Do tam giác ABC cân tại A)

\(AH\) chung

\(\Rightarrow\Delta ABH=\Delta ACH\) (ch-cgv) \(\Rightarrow BH=CH\) (2 cạnh tương ứng)

b) Do \(\Delta ABH=\Delta ACH\Rightarrow\widehat{BAH}=\widehat{CAH}\) (2 góc tương ứng)

c) Do \(BH=CH\Rightarrow BH=CH=\dfrac{1}{2}BC=4\left(cm\right)\)

Áp dụng ĐL Pytago ta có: \(AB^2=AH^2+BH^2\)

\(5^2=AH^2+4^2\Rightarrow AH^2=5^2-4^2=9\Rightarrow AH=3\left(cm\right)\)