trong mp Oxy cho hbh ABCD có tam giác ABD vuông cân nội tiếp đường tròn (C) (x-2)2 + (y-1)2 =9. Biết hình chiếu vuông của B và D xuống đường chéo AC lần lượt là H(22/5;14/5) K(13/5;11/5)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
$\widehat{ABD}=\widehat{DCA}=90^0$ (góc nt chắn nửa đường tròn)
$\Leftrightarrow \widehat{ABE}=\widehat{DCE}=90^0$
Tứ giác $ABEH$ có tổng 2 góc đối $\widehat{ABE}+\widehat{AHE}=90^0+90^0=180^0$ nên là tứ giác nội tiếp.
Tứ giác $DCEH$ có tổng 2 góc đối $\widehat{DCE}+\widehat{EHD}=90^0+90^0=180^0$ nên là tứ giác nội tiếp.
b)
Từ 2 tứ giác nội tiếp phần a, kết hợp với $ABCD$ là tứ giác nội tiếp, ta có:
\(\widehat{HBE}=\widehat{EAH}=\widehat{CAD}=\widehat{CBD}=\widehat{CBE}\) nên $BE$ là tia phân giác $\widehat{HBC}$
\(\widehat{HCE}=\widehat{EDH}=\widehat{BDA}=\widehat{BCA}=\widehat{BCE}\) nên $CE$ là tia phân giác $\widehat{BCH}$
Do đó $E$ chính là tâm đường tròn nội tiếp tam giác $BCH$
c) Sử dụng tính chất trung tuyến ứng với cạnh huyền thì bằng nửa cạnh huyền. Suy ra $IH=IC=EI=ID$.
Ta có:
\(\widehat{IHD}=\widehat{IDH}=\widehat{ODB}=\widehat{OBD}=\widehat{OBI}\) nên $OBIH$ là tứ giác nội tiếp $(1)$
Mặt khác:
$\widehat{HIC}=\widehat{HIB}+\widehat{CIB}$
$=2\widehat{IDH}+2\widehat{CDI}$
$=2\widehat{HDC}=2\widehat{ADC}=2(90^0-\widehat{CAD})$
$=180^0-2\widehat{CBE}=180^0-\widehat{CBH}$
$\Rightarrow BHIC$ là tứ giác nội tiếp $(2)$
Từ $(1);(2)$ suy ra đpcm.
a/ Xét tg vuông ADF và tg vuông ACK có ^CAK chung
=> tg ADF đồng dạng với tg ACK \(\Rightarrow\frac{AF}{AK}=\frac{AD}{AC}\Rightarrow AF.AC=AK.AD\)
b/
BE vuông góc AC; DF vuông góc với AC => BE//DF (Hai đường thẳng cùng vuông góc với 1 dt thứ 3 thì chúng // với nhau) (1)
Xét tg vuông ABE và tg vuông CDF có
AB=CD (cạnh đối hbh)
AB//CD => ^BAE=^DCF (góc so le trong
=> tg ABE = tg CDF => BE=DF (2)
Từ (1) và (2) => BEDF là hình bình hành (Tứ giác có 1 cặp cạnh đối // và = nhau là hình bình hành)
Bạn tự vẽ hình nha, mình ko bt vẽ hình trên OLM đâu.
a) Xét 2 tam giác AFD và tam giác AKC có:
*Chung góc DAF
*Góc AFD = Góc AKC = 90 độ (gt)
=> Tam giác AFD đồng dạng tam giác AKC (gg)
=> \(\frac{AF}{AD}=\frac{AK}{AC}\)
=> \(AF.AC=AK.AD\) (ĐPCM)
b) Do ABCD là hình bình hành (gt)
=> Góc DAF = Góc BCE (2 góc SLT)
Xét tam giác ADF và tam giác CBE có:
+ DAF = BCE (cmt)
+ AFD = BEC = 90 độ (gt)
=> Tam giác ADF đồng dạng tam giác BCE (gg)
=> góc ADF = góc CBE
Xét tam giác ADF và tam giác CBE có:
*AD=BC (Do ABCD là hình bình hành)
*DAF = BCE (cmt)
*ADF = CBE (cmt)
=> Tam giác ADF = Tam giác CBE (gcg)
=> \(DF=BE\) (1)
Có: DF và BE cùng vuông góc với AC (gt)
=> DF // BE (2)
TỪ (1) VÀ (2) => Tứ giác BEDF là hình bình hành.
bổ sung câu hỏi ạ :) :P Tìm tọa độ đỉnh B biết AD=\(3\sqrt{2}\)