2/7=x/y và3.x-y=-2
tìm x,y
giup nhe minh tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho hệ pt 3x-y=2m-1 và x+2y=3m+2
tìm m để hpt có nghiệm ( x;y) thỏa mãn \(^{x^2}\)+\(^{y^2}\)đạt GTNN
Ta có: \(\left\{{}\begin{matrix}3x-y=2m-1\\x+2y=3m+2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}6x-2y=4m-2\\x+2y=3m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7x=7m\\y=3x-2m+1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m\\y=m+1\end{matrix}\right.\)
Mặt khác: \(x^2+y^2=2m^2+2m+1=2\left(m^2+m+\dfrac{1}{2}\right)\)
\(=2\left(m^2+2\cdot m\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{4}\right)=2\left(m+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)
Dấu bằng xảy ra \(\Leftrightarrow m+\dfrac{1}{2}=0\Leftrightarrow m=-\dfrac{1}{2}\)
Vậy ...
\(\)áp dụng BĐT AM-GM(BÀi này ko có Max chỉ có Min)
\(=>\dfrac{1}{x}+\dfrac{1}{y}\ge2\sqrt{\dfrac{1}{xy}}=\dfrac{2}{\sqrt{xy}}\)
\(=>\dfrac{1}{2}\ge\dfrac{2}{\sqrt{xy}}=>\sqrt{xy}\ge4\)
\(=>S=\sqrt{x}+\sqrt{y}\ge2\sqrt{4}=4\)
dấu"=" xảy ra<=>x=y=4
a: \(=x\left[49-x^2\left(2x+1\right)^2\right]\)
\(=x\left[49-\left(2x^2+x\right)^2\right]\)
\(=x\left[\left(7-2x^2-x\right)\left(7+2x^2+x\right)\right]\)
b: \(=5\left[25x^2-\left(y^2-4y+4\right)\right]\)
\(=5\left[\left(5x-y+2\right)\left(5x+y-2\right)\right]\)
c: \(=1-4x^2-x\left(x^2-4\right)\)
\(=1-4x^2-x^3+4x\)
\(=\left(1-x\right)\left(1+x+x^2\right)-4x\left(x-1\right)\)
\(=\left(1-x\right)\left(1+x+x^2+4x\right)\)
\(=\left(1-x\right)\left(x^2+5x+1\right)\)
e: =(x-9)(x+6)
a, x/3 = y/-4 = z/-5
=> 2x/6 = 3y/-12 = 4z/-20
theo đề bài áp dụng tính chất của dãy tỉ số bằng nhau ta có :
2x/6 = 3y/-12 = 4z/-20 = 2x + 3y - 4z/6 + (-12) - (20) = 70/14 = 5
=> x = 5.3 = 15
y = 5.(-4) = -20
z = 5.(-5) = -25