K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2016

555222 + 222555 =222555 + 555555 - (555555 - 555222
= 222555 + 555555 - 555222(555333 - 1) 
Ta có :
222555 + 555555 chia hết cho 222 + 555 = 777 chia hết cho 7 (1) 
555333 - 1 = (5553)111 - 1 \(⋮\) 5553 - 1 
Ta có 555 = 7 . 79 + 2 = 7k + 2 (với k = 79) 
5553 - 1 = (7k+2)³ - 1 = (7k)³ + 3.(7k)².2 + 3.7k.2² + 8 - 1 = (7k)³ + 3.(7k)².2 + 3.7k.2² + 7 \(⋮\)
=> 555333 - 1 chia hết cho 7 (2) 
Từ (1) và (2) => 555222 + 222555 chia hết cho 7 (đpcm)

   THAM KHẢO!                                                                                                                           555222 + 222555 =222555 + 555555 - (555555 - 555222
= 222555 + 555555 - 555222(555333 - 1) 
Ta có :
222555 + 555555 chia hết cho 222 + 555 = 777 chia hết cho 7 (1) 
555333 - 1 = (5553)111 - 1 ⋮⋮ 5553 - 1 
Ta có 555 = 7 . 79 + 2 = 7k + 2 (với k = 79) 
5553 - 1 = (7k+2)³ - 1 = (7k)³ + 3.(7k)².2 + 3.7k.2² + 8 - 1 = (7k)³ + 3.(7k)².2 + 3.7k.2² + 7 ⋮⋮ 7 
=> 555333 - 1 chia hết cho 7 (2) 
Từ (1) và (2) => 555222 + 222555 chia hết cho 7 (đpcm)

23 tháng 1 2022

thanks !

9 tháng 6 2016

Ta có : \(2^{28}-1=\left(2^{14}\right)^2-1\equiv1^2-1\left(mod9\right)\)

Vậy \(2^{28}-1⋮29\).

10 tháng 6 2016

Tài Nguyễn Tuấn bạn có thể giải thích rõ hơn được ko?

30 tháng 6 2018

A) Gọi số dư của hai số đó là N ( N khác 0 ; N nhỏ hơn 7 )

    Gọi 2 số đó là 7A và 7B ( A , B khác 0 ; A>B )

Ta có : ( 7A + N ) : 7 ( dư N )

           ( 7B + N ) : 7 ( dư N )

=> ( 7A + N ) - ( 7B + N ) 

=  7A - 7B

= 7 . ( A - B ) chia hết cho 7

Vậy 2 số khi chia cho 7 có cùng số dư thì hiệu của chúng chia hết cho 7 .

B) Theo đề ta có : 3 chỉ có 2 số dư là 1 hoặc 2

    Gọi 2 số đó là 3k+1 và 3h+2 

Ta có : 3k+1 : 3 ( dư 1 )

            3h+2 : 3 ( dư 2 )

=> ( 3k+1 ) + ( 3h+2 )

= 3k+ 3h + 3

= 3 . ( k + h + 1 )

Vậy 2 số không chia hết cho 3 mà có số dư khác nhau thì tổng của chúng chia hết cho 3

Đọc thì nhớ tk nhá

NM
21 tháng 12 2020

ta có

\(A=5^{2020}+5^{2019}+5^{2018}+5^{2017}=5^{2018}\left(5^2+1\right)+5^{2017}\left(5^2+1\right)\)

\(=\left(5^{2018}+5^{2017}\right)\left(5^2+1\right)=6.5^{2017}.26=12.5^{2016}.65\) chia hết cho 65.

26 tháng 10 2018

A là số lẻ 

A=2k+1, k thuộc Z

A4+23=(2k+1)4+23=(2k+1)2.(2k+1)2+23=(4k^2+4k+1)(4k^2+4k+1)+23=(4k^2+4k).(4k^2+4k+1)+4k^2+4k+1+23

=4(k^2+k)(4k^2+4k+1)+4k^2+4k+24 chia hết cho 4

15 tháng 1 2017

 a,

n kog chia hết cho 3. Ta có: n = 3k +1 và n = 3k+2

TH1: n2 : 3 <=> (3k+1): 3 = (9k2+6k+1) : 3 => dư 1

TH2: n: 3 <=> (3k+2)2 : 3 = (9k2+12k+4) : 3 = (9k2+12k+3+1) : 3 => dư 1 

các phần sau làm tương tự.