Cho a,b,c,d,m,n thuộc z
Và a<b<c<d<m<n
CMR;a+c+m/a+b+c+d+m+n<1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a,b,c,d,m,n thuộc Z và a < b < c < d < m < n nên ta có :
a + b < 2a ( 1 )
c + d < 2c (2)
m + n < 2m ( 3)
Cộng vế với vế các bđt (1), (2) và (3) ta được : a + b + c + d + m + n > 2 ( a + c + m )
=> \(\frac{1}{a+b+c+d+m+n}< \frac{1}{2\left(a+c+m\right)}\)
=>\(\frac{a+c+m}{a+b+c+d+m+n}< \frac{a+c+m}{2.\left(a+c+m\right)}=\frac{1}{2}\) ( đpcm )
xin lỗi mình đánh nhầm dấu ">" thành "<" mình xin đính chính lại nhé : a + c > 2a (1 )
c + d > 2c (2)
m + n > 2m ( 3)
có chút sai xót chỗ này thành thật xin lỗi !
*\(\frac{a}{b}<\frac{a+c}{b+d}\)=>ab+ad<ab+bc(b,d thuộc N*)
=>ad<bc
Nhân cả hai vế cho 1/bd ta được:
a/b < c/d(Đúng với giả thiết) (b,d thuộc N*)
=>\(\frac{a}{b}<\frac{a+c}{b+d}\)
*\(\frac{a+c}{b+d}<\frac{c}{d}\)=>ad+cd<bc+cd (b,d thuộc N*)
=>ad<bc
Nhân cả hai vế cho 1/bd ta được:
=>a/b<c/d (đúng với giả thiết) (b,d thuộc N*)
Vậy \(\frac{a}{b}<\frac{a+c}{b+d}<\frac{c}{d}\)
a < b => 2a < a + b
c < d => 2c < c + d
m < n => 2m < m + n
=> 2(a + c + m) < a + b + c + d + m + n
=> \(\frac{2\left(a+c+m\right)}{a+b+c+d+m+n}< 1\)
=> \(\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)
Phân số có tử bé hơn mẫu thì bé hơn 1