chứng minh rằng (abc + deg) chia hết cho 7 thì abcdeg chia hết cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(abcdeg=1000\cdot abc+deg\)
\(=1001abc-\left(abc-deg\right)\)
\(=7\cdot143\cdot abc-\left(abc-deg\right)\)
Vì \(7\cdot143\cdot abc⋮7\) và \(abc-deg⋮7\)
nên \(7\cdot143\cdot abc-\left(abc-deg\right)⋮7\)
hay \(abcdeg⋮7\)(đpcm)
7)a) abcabc : abc = 1001
abcabc = 1001 x abc . Mà 1001 chia hết cho 7; 11; 13 nên 1001 x abc chia hết cho 7; 11; 13 . Vậy abcabc chia hết cho 7; 11; 13 ( đpcm)
b .Vì abc = 2 . deg nên abcdeg : deg = 2001
abcdeg = 2001 x deg. Do 2001 chia hết cho 23 và 29 nên 2001 x deg chia hết cho 23 và 29 . Vậy abcdeg chia hết cho 23 và 29 ( đpcm)
Ta có :
abcabc = 1000abc + abc
= 1001 . abc
= 7 . 11 . 13 . abc chia hết cho 7 ; 11 ; 13
abc = a . 100 + b . 10 + c
= (a . 98 + b . 7) + 2 . a + 3 . b + a
Ta có : a.98 + b.7 chia hết cho 7
=> 2a + 3b + c chia hết cho 13
a) abcdeg = 1000.abc +deg = 1001.abc - abc + deg = 1001.abc - (abc - deg)
Mà 1001.abc chia hết cho 7 và abc - deg chia hết cho 7
=> abcdeg chia hết cho 7 (đpcm)
b) abcdeg = 10000.ab + 100.cd + eg = 9999.ab + 99.cd + (ab + cd + eg)
Vì 9999.ab chia hết cho 11, 99.cd chia hết cho 11 và ab + cd + eg chia hết cho 11
=> abcdeg chia hết cho 11 (đpcm)
Cho mình **** nha
a) Dựa vào dấu hiệu chia hết cho 7.
b) Dực vào dấu hiệu chia hết cho 11.
a,
Ta có : A = abcdeg - ( abc + deg )
= abc . 1000 + deg - abc - deg
= abc . 999
= abc . 27.37
=> A chia hết cho 37
Vậy........................
b, Như trên nhé
hok tốt
#Pu ka#
Ta có :
abcdeg = 1000abc + deg = 1001abc - abc + deg = 7.143abc - abc + deg
Vì 7.143abc chia hết cho 7 và abc + deg chia hết cho 7 nên abcdeg chia hết cho 7