Tìm giá trị nhỏ nhất của A= | 5 phần 7 - x | + 6 phần 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 7 . Tìm số tự nhiên n sao cho \(C=\frac{3n+1}{n-1}\)có giá trị nguyên
\(C=\frac{3n+1}{n-1}=\frac{3\left(n-1\right)+4}{n-1}=3+\frac{4}{n-1}\)
Để C nguyên => \(\frac{4}{n-1}\)nguyên
=> \(4⋮n-1\)
=> \(n-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n-1 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 2 | 0 | 3 | -1 | 5 | -3 |
Vì n thuộc N => n = { 2 ; 0 ; 3 ; 5 }
6/ Bg
Để giá trị A nhỏ nhất thì \(\frac{\left|x\right|+2002}{2003}\)nhỏ nhất
=> |x| nhỏ nhất
Mà |x| > 0
=> x = 0 thì A có giá trị nhỏ nhất
=> A = \(\frac{\left|0\right|+2002}{2003}=\frac{2002}{2003}\)
Để B có giá trị nhỏ nhất thì \(\frac{-10}{\left|x\right|+10}\)nhỏ nhất
=> |x| nhỏ nhất để phân số trên có giá trị nhỏ nhất
=> |x| = 0 --> x = 0
=> B = \(\frac{-10}{\left|0\right|+10}=-1\)
a: \(A=\left|x-\dfrac{3}{4}\right|+1\ge1\forall x\)
Dấu '=' xảy ra khi x=3/4
b: \(B=-\left|4x-3\right|+7\le7\forall x\)
Dấu '=' xảy ra khi x=3/4