Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-bạn tự lập bảng nhé
a, \(3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
b, \(\dfrac{2\left(n-3\right)+11}{n-3}=2+\dfrac{11}{n-3}\Rightarrow n-3\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
n-3 | 1 | -1 | 11 | -11 |
n | 4 | 2 | 14 | -8 |
c, \(\dfrac{3n}{n+2}=\dfrac{3\left(n+2\right)-6}{n+2}=3-\dfrac{6}{n+2}\Rightarrow n+2\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Ta có: A> / x-1+5-x/
A>hoặc =/ 4/
Min A= 4 đạt đc khi x-1 và 5-x cùng dấu
th1: Nếu \(\hept{\begin{cases}x-1>0\\5-x>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>=2\\x< =5\end{cases}}\)( lớn ( bé) hơn hoặc =)
\(\Rightarrow x\in1,2,3,4,5\)
th2: Nếu \(\hept{\begin{cases}x-1< 0\\5-x< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 1\\x>5\end{cases}}}\)
\(\Rightarrow x\in\)rỗng
Vậy...........
B= /x+1/+ /x-8/
Ta có: x-8 và 8-x là 2 số đối nhau \(\Rightarrow\)/x-8/=/8-x/
\(\Rightarrow\)B= /x+1/+/8-x/
B > /x+1+8-x/
B >=9
Min 9 đạt đc khi x+1 và 8-x cùng dấu.
th1: Nếu \(\hept{\begin{cases}x+1>0\\8-x>0\end{cases}\Rightarrow\hept{\begin{cases}x>=-1\\x< =8\end{cases}}}\)
\(\Rightarrow x\in-1,0,1,2,3,4,5,6,7,8\)
th2: Nếu \(\hept{\begin{cases}x+1< 0\\8-x< 0\end{cases}\Rightarrow\hept{\begin{cases}x< =-1\\x>=-8\end{cases}}}\)
\(\Rightarrow x\in\)rỗng
a) ta có: \(\frac{3n+15}{n+1}=\frac{3n+3+12}{n+1}=\frac{3.\left(n+1\right)+12}{n+1}=3+\frac{12}{n+1}\)
Để 3n+15/n+1 có giá trị nguyên
\(\Rightarrow\frac{12}{n+1}\inℤ\Rightarrow12⋮n+1\)
\(\Rightarrow n+1\inƯ_{\left(12\right)}=\left(1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right)\)
rùi bn thay giá trị của n+1 vào để tìm n nhé!
b) ta có: \(\frac{3n+5}{n-2}=\frac{3n-6+11}{n-2}=\frac{3.\left(n-2\right)+11}{n-2}=3+\frac{11}{n-2}\)
Để 3n+5/n-2 có giá trị nguyên
=> 11/n-2 thuộc z
=> 11 chia hết cho n-2 => n-2 thuộc Ư(11) = (1;-1;11;-11)
c) ta có: \(\frac{2n+13}{n-1}=\frac{2n-2+15}{n-1}=\frac{2.\left(n-1\right)+15}{n-1}=2+\frac{15}{n-1}\)
Để 2n+13/n-1 có giá trị nguyên => 15/n-1 thuộc Z
=> 15 chia hết cho n-1 => n-1 thuộc Ư(15)=(1;-1;3;-3;5;-5;15;-15)
d) ta có: \(\frac{6n+5}{2n+1}=\frac{6n+3+2}{2n+1}=\frac{3.\left(2n+1\right)+2}{2n+1}=3+\frac{2}{2n+1}\)
để phân số sau có giá trị là số tự nhiên thì:
3n + 5 chi hết cho n + 1
<=> 3.(n + 1) + 2 chia hết cho n + 1
ta thấy: 3.(n + 1) chia hết cho n + 1
=> 2 phải chi hết cho n + 1
n + 1 thuộc Ư(2) = { 1; 2}
n thuộc { 0; 1}
a: A nguyên
=>3n-1 thuộc {1;-1;2;-2;3;-3;4;-4;6;-6;12;-12}
=>n thuộc {2/3;0;1;-1/3;4/3;-2/3;5/3;-1;7/3;-5/3;13/3;-11/3}
b: B nguyên
=>2n+3 chia hết cho 7
=>2n+3=7k(k\(\in Z\))
=>\(n=\dfrac{7k-3}{2}\left(k\in Z\right)\)
c: C nguyên
=>2n+5 chia hết cho n-3
=>2n-6+11 chia hết cho n-3
=>n-3 thuộc {1;-1;11;-11}
=>n thuộc {4;2;12;-8}
Bài 7 . Tìm số tự nhiên n sao cho \(C=\frac{3n+1}{n-1}\)có giá trị nguyên
\(C=\frac{3n+1}{n-1}=\frac{3\left(n-1\right)+4}{n-1}=3+\frac{4}{n-1}\)
Để C nguyên => \(\frac{4}{n-1}\)nguyên
=> \(4⋮n-1\)
=> \(n-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Vì n thuộc N => n = { 2 ; 0 ; 3 ; 5 }
6/ Bg
Để giá trị A nhỏ nhất thì \(\frac{\left|x\right|+2002}{2003}\)nhỏ nhất
=> |x| nhỏ nhất
Mà |x| > 0
=> x = 0 thì A có giá trị nhỏ nhất
=> A = \(\frac{\left|0\right|+2002}{2003}=\frac{2002}{2003}\)
Để B có giá trị nhỏ nhất thì \(\frac{-10}{\left|x\right|+10}\)nhỏ nhất
=> |x| nhỏ nhất để phân số trên có giá trị nhỏ nhất
=> |x| = 0 --> x = 0
=> B = \(\frac{-10}{\left|0\right|+10}=-1\)