Cho trước mặt phẳng \(\left(P\right):x+y-x+1=0\) và 2 điểm \(A\left(-2;1;3\right):B\left(3;-5;6\right)\)
a. Tìm tọa độ điểm C trên mặt (P) sao cho CA + CB nhỏ nhất
b. Tìm điểm D trên mặt phẳng (P) sao cho \(\overrightarrow{DA}+\overrightarrow{DB}\) có độ dài ngắn nhất.
a. Do \(\left(-2\right)+1-3+1=-3< 0\)
và \(4+\left(-5\right)-6+1=-6< 0\)
nên A, B ở về cùng 1 phía của mặt phẳng (P). Do đó điểm \(C\in\left(P\right)\) sao cho \(CA+CB\) nhỏ nhất chính là giao điểm của đoạn AB với mặt phẳng (P), trong đó A' là điểm đối xứng với A qua mặt phẳng (P)
Giả sử \(A'\left(x;y;z\right)\) do A' đối xứng với A qua mặt phẳng (P) nên ta có hệ phương trình :
\(\begin{cases}\frac{x-2}{2}+\frac{y+2}{2}-\frac{zx+2}{2}+1=0\\\frac{x-2}{1}=\frac{y-1}{1}=\frac{z-3}{-1}\end{cases}\)
Giải hệ ta được \(x=0;y=3;z=1\)
Do đó \(A'\left(0;3;1\right)\)
Gọi \(C\left(x;y;z\right)\) là giao điểm của A'B với (P). Khi đó tọa độ của C' thỏa mãn phương tringf của (P) và hai vecto \(\overrightarrow{A'C};\overrightarrow{A'B}\) cùng phương. Do đó, ta có hệ phương trình :
\(\begin{cases}x+y-z+1=0\\\frac{x-0}{4-0}=\frac{y-3}{-5-3}=\frac{z-1}{6-1}\end{cases}\)
Từ phương trình thứ 2 suy ra \(y=-2x+3\) và \(z=\frac{5}{4}x+1\)
Thay vào phương trình thứ nhất ta được \(x=\frac{3}{4}\). Từ đó tìm được \(y=\frac{3}{2}\) và \(z=\frac{31}{16}\)
Vậy điềm \(C\) cần tìm là \(C\left(\frac{3}{4};\frac{3}{2};\frac{31}{16}\right)\)
b. Gọi I là trung điểm của AB. Khi đó \(I\left(1;-2;\frac{9}{2}\right)\) và với mọi điểm D đều có \(\overrightarrow{DA}+\overrightarrow{DB}=2\overrightarrow{DI}\)
Vậy \(D\in\left(P\right):\left|\overrightarrow{DA}+\overrightarrow{DB}\right|\) bé nhất \(\Leftrightarrow\) D là hình chiếu của I trên mặt phẳng (P)
Gọi \(\left(x;y;z\right)\) là tọa độ của hình chiếu điểm I trên (P). Khi đó ta có hệ phương trình :
\(\begin{cases}x+y-z+1=0\\\frac{x-1}{1}=\frac{y+2}{1}=\frac{z-\frac{9}{2}}{-1}\end{cases}\)
Giải hệ ta thu được :
\(x=\frac{5}{2};y=-\frac{1}{2};z=3\)
Vậy điểm \(D\in\left(P\right)\) sao cho \(\overrightarrow{DA}+\overrightarrow{DB}\) có độ dài nhỏ nhất là \(D\left(\frac{5}{2};-\frac{1}{2};3\right)\)