Cho tam giác ABC, điểm P nằm trong tam giác sao cho ABP=ACP, kẻ PH vuông góc với AB, PK vuông góc với AC. Gọi D là trung điểm cạnh BC . CHứng minh :
a. BP. KP= CP.HP
b. DK = DH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xet 2 tam giác KPC và tam giac HPB
CÓ góc PKC=góc PHB
góc KPC=góc HPB(đ.đ)
suy ra tam giac KPC đồng dạng với tam giác HPB
Nên ta có: KP/HP=KC/HB=PC/PB
Suy ra KB.PB=PC.HP
Cho mk loi nhan xet nha
1) Làm được câu a chưa
a) Xét tam giác HPB và KPC có:
\(\widehat{ABP}=\widehat{ACP}\)
\(\widehat{H}=\widehat{K}=90^o\)
\(\Rightarrow\) Tam giác HPB đồng dạng với tam giác KCP
\(\Rightarrow BP.KP=CP.HP\)
b) Tam giác HBC vuông có D là trung điểm cạnh huyền BC
\(\Rightarrow HD=\frac{BC}{2}\)
Tương tự ta cũng có \(KD=\frac{BC}{2}\)
\(\Rightarrow DK=DH\left(đpcm\right)\)
2) Gọi O là tâm hình bình hành. Qua M kẻ đường thẳng song song BD cắt AC; AD theo thứ tự tại N; P => N là trung điểm MP. Qua K kẻ đường thẳng song song BD cắt AB tại Q. Không mất tính tổng quát giả thiết Q nằm giữa A và G, G nằm giữa Q và N .Ta có:
GQ/GN = KQ/MN
<=> GQ/GN = KQ/NP ( vì MN = NP)
<=> GQ/GN = AQ/AN ( vì KQ/NP = GN/AN)
<=> GQ/AQ = GN/AN
<=> (AG - AQ)/AQ = (AN - AG)/AN ( vì GQ = AG - AQ; GN = AN - AG)
<=> 1/AN + 1/AQ = 2/AG
<=> OA/AN + OA/AQ = 2.OA/AG
<=> AB/AM + AD/AK = AC/AG (đpcm) ( vì OA/AN = AB/AM; OA/AQ = AD/AK; AC = 2OA)
câu 1b bạn làm sai r, H,P,C có thẳng hàng đâu
còn câu 2 dòng thứ 6 sao ra dòng thứ 7 vậy bạn, AQ=GN hé.sao ra???
a: Xét tứ giác AHDK có
\(\widehat{AHD}=\widehat{AKD}=\widehat{KAH}=90^0\)
=>AHDK là hình chữ nhật
Hình chữ nhật AHDK có AD là phân giác của góc HAK
nên AHDK là hình vuông
MÌNH ĐANG CẦN GIẢI GẤP. MONG CÁC BẠN GIÚP ĐỠ HẾT SỨC CÓ THỂ
XIN CHÂN THÀNH CẢM ƠN !!!!!!!!!!!!!!!!!!!!!!
a , vẽ hình
xét \(\Delta BPH\) và \(\Delta CPK\) có
\(\widehat{BHP}=\widehat{CKP}=90^o\)
\(\widehat{HBP}=\widehat{KCP}\)
=> \(\Delta BPH\) đồng dạng với \(\Delta CPK\)
=> \(\frac{BP}{CP}=\frac{HP}{PH}\)
hay \(BP.KP=CP.HP\left(đpcm\right)\)
Mày nhìn cái chóa j