Tính tổng :
\(\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+.....+\frac{1}{946}+\frac{1}{990}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính tổng ;
M = \(\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+.....+\frac{1}{946}+\frac{1}{990}\)
HELP ME
\(M=\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+...+\frac{1}{946}+\frac{1}{990}\)
\(\Rightarrow\frac{1}{2}M=\frac{1}{2}\left(\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+...+\frac{1}{946}+\frac{1}{990}\right)\)
\(\Rightarrow\frac{1}{2}M=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{1892}+\frac{1}{1980}\)
\(\Rightarrow\frac{1}{2}M=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{43.44}+\frac{1}{44.45}\)
\(\Rightarrow\frac{1}{2}M=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{43}-\frac{1}{44}+\frac{1}{44}-\frac{1}{45}\)
\(\Rightarrow\frac{1}{2}M=\frac{1}{5}-\frac{1}{45}=\frac{9}{45}-\frac{1}{45}=\frac{8}{45}\)
\(\Rightarrow M=\frac{8}{45}:\frac{1}{2}=\frac{8}{45}.2=\frac{16}{45}\)
nhớ ấn đúng cho mình nha
\(M=\frac{2}{30}+\frac{2}{42}+...+\frac{2}{1980}\)
\(=2\left(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{44.45}\right)\)
\(=2\left(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{44}-\frac{1}{45}\right)\)
\(=2\left(\frac{1}{5}-\frac{1}{45}\right)\)
\(=2\times\frac{8}{45}\)
\(=\frac{16}{45}\)
\(M=\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+...+\frac{1}{946}+\frac{1}{990}\)
\(M=\frac{2}{30}+\frac{2}{42}+...+\frac{2}{1980}\)
\(M=2\left(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{44.45}\right)\)
\(M=2\left(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{44}-\frac{1}{45}\right)\)
\(M=2\left(\frac{1}{5}-\frac{1}{45}\right)\)
\(M=2\times\frac{8}{45}\)
\(M=\frac{16}{45}\)
\(M=\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+...+\frac{1}{946}+\frac{1}{990}\)
\(M=\frac{1\times2}{15\times2}+\frac{1\times2}{21\times2}+\frac{1\times2}{28\times2}+\frac{1\times2}{946\times2}+\frac{1\times2}{990\times2}\)
\(M=\frac{2}{30}+\frac{2}{42}+\frac{2}{56}+...+\frac{2}{1892}+\frac{2}{1980}\)
\(M=2\times\left(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{1892}+\frac{1}{1980}\right)\)
\(M=2\times\left(\frac{1}{5\times6}+\frac{1}{6\times7}+\frac{1}{7\times8}+...+\frac{1}{43\times44}+\frac{1}{44\times45}\right)\)
\(M=2\times\left(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{43}-\frac{1}{44}+\frac{1}{44}-\frac{1}{45}\right)\)
\(M=2\times\left(\frac{1}{5}-\frac{1}{45}\right)\)
\(M=2\times\left(\frac{9}{45}-\frac{1}{45}\right)\)
\(M=2\times\frac{8}{45}\)
\(M=\frac{16}{45}\)
Chúc bạn học tốt
\(M=\frac{2}{30}+\frac{2}{42}+...+\frac{2}{1980}\)
\(M=2\left(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{44.45}\right)\)
\(M=2\left(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{44}-\frac{1}{45}\right)\)
\(M=2\left(\frac{1}{5}-\frac{1}{45}\right)\)
\(M=2\times\frac{8}{45}\)
\(M=\frac{16}{45}\)
\(M=\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+....+\frac{1}{946}+\frac{1}{990}\)
\(M=\frac{2}{30}+\frac{2}{42}+\frac{2}{56}+.....+\frac{2}{1892}+\frac{2}{1980}\)
\(M=2.\left(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{1892}+\frac{1}{1980}\right)\)
\(M=2.\left(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+....+\frac{1}{43.44}+\frac{1}{44.45}\right)\)
\(M=2.\left(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+....+\frac{1}{43}-\frac{1}{44}+\frac{1}{44}-\frac{1}{45}\right)\)
\(M=2.\left(\frac{1}{5}-\frac{1}{45}\right)=2.\frac{8}{45}=\frac{16}{45}\)
Vậy M=16/45
Đặt tổng trên = A
Có : A = 1/1.2.3 + 1/2.3.4 + ...... + 1/9.10.11
2A = 2/1.2.3 + 2/2.3.4 + ...... + 2/9.10.11
= 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + ....... + 1/9.10 - 1/10.11
= 1/1.2 - 1/10.11
= 1/2 - 1/110 = 27/55
=> A = 27/55 : 2 = 27/110
Tk mk nha
Đặt \(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}\)
\(A=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+\frac{2}{56}\)
\(A=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{5.6}+\frac{2}{6.7}+\frac{2}{7.8}\)
\(A=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{7}-\frac{1}{8}\right)\)
\(A=2\left(\frac{1}{2}-\frac{1}{8}\right)\)
\(\Rightarrow A=2\cdot\frac{3}{8}=\frac{3}{4}\)
\(=1+\frac{1}{1.3}+\frac{1}{3.2}+\frac{1}{2.5}+\frac{1}{5.3}+\frac{1}{3.7}+\frac{1}{7.4}+\frac{1}{4.9}+\frac{1}{9.5}\)
\(=1+1-\frac{1}{5}\)
\(=\frac{10}{5}-\frac{1}{5}\)
\(=\frac{9}{5}\)
Ai thấy đúng thì
lấy (1/3 + 1/15 +1/10 + 1/21 ) + (1/36 + 1/28 + 1/6) + (1/45 + 1/55)
= (4/50 + 3/70) + 2/100
= 7/120 + 2/100
= 9/220
\(S = \frac{1}{3} +\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28} \)
\(S=\frac{1}{3}+\frac{1}{3}.\frac{1}{2}+\frac{1}{5}.\frac{1}{2}+\frac{1}{5}.\frac{1}{3}+\frac{1}{7}.\frac{1}{3}+\frac{1}{7}.\frac{1}{4} \)
\(S=\frac{1}{3}(1+\frac{1}{2})+\frac{1}{5}(\frac{1}{2}+\frac{1}{3})+\frac{1}{7}(\frac{1}{3}+\frac{1}{4})\)
\(S=\frac{1}{3}.\frac{3}{2}+\frac{1}{5}.\frac{5}{6}+\frac{1}{7}.\frac{7}{12}\)
\(S=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}\)
\(S=\frac{6}{12}+\frac{2}{12}+\frac{1}{12}\)
\(S=\frac{9}{12}\)
\(S=\frac{3}{4}\)
Chào bạn, bạn hãy theo dõi bài giải của mình nhé!
\(\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+...+\frac{1}{946}+\frac{1}{990}\)
\(=\frac{2}{30}+\frac{2}{42}+\frac{2}{56}+...+\frac{2}{1892}+\frac{2}{1980}\)
\(=\frac{2}{5\cdot6}+\frac{2}{6\cdot7}+\frac{2}{7\cdot8}+...+\frac{2}{43\cdot44}+\frac{2}{44\cdot45}\)
\(=2\left(\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+...+\frac{1}{43\cdot44}+\frac{1}{44\cdot45}\right)\)
\(=2\left(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{43}-\frac{1}{44}+\frac{1}{44}-\frac{1}{45}\right)\)
\(=2\left(\frac{1}{5}-\frac{1}{45}\right)=2\left(\frac{9}{45}-\frac{1}{45}\right)=2\cdot\frac{8}{45}=\frac{16}{45}\)
Chúc bạn học tốt!