Help me ! Tính :
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
giải rõ ràng, nhá ! Mik làm cuối cùng nó ra là \(\frac{9899}{9900}\)nhưng chắc o phải đâu vì mấy đứa kia học thêm còn tui kết quả lạ lại ko học thêm nữa ! Thôi ! Help me nhá !
^_^
\(A=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+.....+\frac{1}{99\times100}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}\)
Chúc bạn học tốt
A= \(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+...+\(\frac{1}{99.100}\)
A= \(\frac{1}{1}\)-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+...+\(\frac{1}{99}\)-\(\frac{1}{100}\)
A= \(\frac{1}{1}\)-\(\frac{1}{100}\)
A= \(\frac{1}{1}\)+\(\frac{-1}{100}\)
A= \(\frac{100}{100}\)+\(\frac{-1}{100}\)
A= \(\frac{99}{100}\)
Vậy A= \(\frac{99}{100}\)