Sắp xếp theo thứ tự giảm dần :
\(\sqrt{2};\left(2^3\right)^{\log_{64}\frac{5}{4}};2^{\frac{\pi}{6}};2^{3\log_92}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(6 = \sqrt {36} ; - 1,7 = - \sqrt {2,89} \)
Vì 0 < 2,89 < 3 nên 0> \( - \sqrt {2,89} > - \sqrt 3 \) hay 0 > -1,7 > \( - \sqrt 3 \)
Vì 0 < 35 < 36 < 47 nên \(0 < \sqrt {35} < \sqrt {36} < \sqrt {47} \) hay 0 < \(\sqrt {35} < 6 < \sqrt {47} \)
Vậy các số theo thứ tự tăng dần là: \( - \sqrt 3 ; - 1,7;0;\sqrt {35} ;6;\sqrt {47} \)
b) Ta có:
\(\sqrt {5\frac{1}{6}} = \sqrt {5,1(6)} ; - \sqrt {2\frac{1}{3}} = - \sqrt {2,(3)} \); -1,5 = \( - \sqrt {2,25} \)
Vì 0 < 2,25 < 2,3 < 2,(3) nên 0> \( - \sqrt {2,25} > - \sqrt {2,3} > - \sqrt {2,(3)} \) hay 0 > -1,5 > \( - \sqrt {2,3} > - \sqrt {2\frac{1}{3}} \)
Vì 5,3 > 5,1(6) > 0 nên \(\sqrt {5,3} > \sqrt {5,1(6)} \)> 0 hay \(\sqrt {5,3} > \sqrt {5\frac{1}{6}} > 0\)
Vậy các số theo thứ tự giảm dần là: \(\sqrt {5,3} ;\sqrt {5\frac{1}{6}} ;0\); -1,5; \( - \sqrt {2,3} ; - \sqrt {2\frac{1}{3}} \)
\(\left(3\sqrt{10}\right)^2=90\)
\(\left(5\sqrt{3}\right)^2=75\)
\(\left(4\sqrt{5}\right)^2=80\)
\(\left(12\sqrt{\dfrac{2}{3}}\right)^2=96\)
mà 96>90>80>75
nên \(12\sqrt{\dfrac{2}{3}}>3\sqrt{10}>4\sqrt{5}>5\sqrt{3}\)
\(\left(3\sqrt{10}\right)^2=90\)
\(\left(5\sqrt{3}\right)^2=75\)
\(\left(4\sqrt{5}\right)^2=80\)
\(\left(12\sqrt{\dfrac{2}{3}}\right)^2=96\)
mà 96>90>80>75
nên \(12\sqrt{\dfrac{2}{3}}>3\sqrt{10}>4\sqrt{5}>5\sqrt{3}\)
a) Các nguyên tố theo thứ tự bán kính nguyên tử tăng dần: O, N, C, B
b) Các nguyên tố theo thứ tự độ âm điện giảm dần: O, N, C, B
c) Các nguyên tố theo thứ tự tính phi kim giảm dần: O, N, C, B
thứ tự tăng dần là: 324, 436, 543, 765, 908.
thứ tự giảm dần là: 908, 765, 543, 436, 324
Tham khảo:
- Cải biển hàm phandoanLomuto thành him phandoanlomuto_tuple để sắp các cặp (Tên, điểm môn học) theo thành phần điểm môn học.
- Trong him phandoanLomuto_tuple đảo chiều phép so sánh trong câu lệnh if từ "ca" thành "y" để sắp thứ tự giảm dần, đặt tên hàm mới là phanhoanLamuto_tuple_down.
- Dùng hàm phanhoanLamuto_tuple_down để cải biên quícksort thành hàm quickSort_tuple_down.
Ta có :
\(\sqrt{2}=2^{\frac{1}{2}}\)
\(\left(2^3\right)^{\log_{64}\frac{5}{4}}=2^{3\log_{2^6}\frac{5}{4}}=2^{\frac{1}{2}\log_2\frac{5}{4}}=2^{\log_2\sqrt{\frac{5}{4}}}=\sqrt{\frac{5}{4}}=\left(\frac{5}{4}\right)^{\frac{1}{2}}\)
\(2^{3^{\log_92}}=2^{3^{\frac{1}{2}\log_32}}=2^{3^{\log_3\sqrt{2}}}=2^{\sqrt{2}}\)
Mà : \(\sqrt{2}>\frac{\pi}{6}>\frac{1}{2}\Rightarrow2^{\sqrt{2}}>2^{\frac{\pi}{6}}>2^{\frac{1}{2}}\)
\(\Leftrightarrow2^{3^{\log_92}}>2^{\frac{\pi}{6}}>\sqrt{2}\) (1)
Mặt khác : \(2>\frac{5}{4}\Rightarrow2^{\frac{1}{2}}>\left(\frac{5}{4}\right)^{\frac{1}{2}}\) hay \(\sqrt{2}>\left(2^3\right)^{\log_{64}\frac{5}{4}}\) (2)
Từ (1) và (2) : \(2^{3^{\log_92}}>2^{\frac{\pi}{6}}>\sqrt{2}>\left(2^3\right)^{\log_{64}\frac{5}{4}}\)
Vậy thứ tự giảm dần là :
\(2^{3^{\log_92}};2^{\frac{\pi}{6}};\sqrt{2};\left(2^3\right)^{\log_{64}\frac{5}{4}}\)