K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2016

\(P=\sqrt[3]{6+\sqrt{\frac{847}{27}}}+\sqrt[3]{6+\sqrt{\frac{847}{27}}}\)

Ta áp dụng hằng đẳng thức : 

\(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)

\(\Rightarrow P^3=6+\sqrt{\frac{847}{27}}+6-\sqrt{\frac{847}{27}}+3\sqrt[3]{6+\sqrt{\frac{847}{27}}}.\sqrt[3]{6-\sqrt{\frac{847}{27}}}\left(3\sqrt[3]{6+\sqrt{\frac{847}{27}}}.\sqrt[3]{6-\sqrt{\frac{847}{27}}}\right)\)

\(\Leftrightarrow P^3=12+3.\sqrt[3]{36-\frac{847}{27}}.P=12+5P\)

\(\Leftrightarrow P^3-5P-12=0\)

\(\Leftrightarrow\left(P-3\right)\left(P^2+3P+4\right)=0\)

\(\Leftrightarrow P=3\) hoặc \(P^3+3P+4=0\) vô nghiệm

Vậy \(P=3\)

20 tháng 7 2015

đặt \(a=\sqrt[3]{6+\sqrt{\frac{847}{27}}};b=\sqrt[3]{6-\sqrt{\frac{847}{27}}}\). dễ thấy a> 0; b > 0

=> \(a^3+b^3=6+\sqrt{\frac{847}{27}}+6-\sqrt{\frac{847}{27}}=12\)\(a.b=\sqrt[3]{6+\sqrt{\frac{847}{27}}}.\sqrt[3]{6-\sqrt{\frac{847}{27}}}=\sqrt[3]{36-\frac{847}{27}}=\frac{5}{3}\)

Có: (a+ b)3 = a3 + b3 + 3ab (a+ b)

=> (a + b)3 = 12 + 3. \(\frac{5}{3}\).(a + b) = 12+ 5.(a + b)

=> (a + b)3 - 5.(a +b)  - 12 = 0 

<=> (a + b)3 - 9.(a + b)  + 4.(a + b) - 12 = 0

<=> (a + b). [(a + b)2 - 9] + 4.(a + b - 3) = 0 <=> (a + b).(a + b + 3).(a + b- 3) + 4.(a + b - 3) = 0 

<=> (a+ b - 3).[(a + b)(a+ b+ 3) + 4] = 0

<=> a+ b = 3 hoặc (a + b)(a+ b+ 3) + 4 = 0 

tuy nhiên : Vì a > 0; b > 0 nên (a + b)(a+ b+ 3) + 4 > 0 

vậy a + b = 3 => điều phải chứng minh

25 tháng 8 2018

hình thức đăng vui phương pháp lập phương hai vế sau đó nhẩm nghiệm dùng tiếp sơ đồ hoc-ne :))) là ok

25 tháng 8 2018

\(x^3=6+\sqrt{\frac{847}{27}}+6-\sqrt{\frac{847}{27}}+3.\sqrt[3]{\left[6^2-\left(\sqrt{\frac{847}{27}}\right)^2\right]}.x\)

\(\Rightarrow x^3=12+3.\sqrt[3]{\frac{125}{27}}x\)

\(\Leftrightarrow x^3-5x-12=0\)

\(\Leftrightarrow x^3-9x+4x-12=0\)

\(\Leftrightarrow x\left(x+3\right)\left(x-3\right)+4\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2+3x+4\right)=0\).Vì \(x^2+3x+4=x^2+2.\frac{3}{2}.x+\frac{9}{4}+\frac{7}{4}=\left(x+\frac{3}{2}\right)^2+\frac{7}{4}>0\)

\(\Leftrightarrow x=3\)

12 tháng 7 2017

=\(\frac{-4}{3}\)

18 tháng 8 2023

a) \(\sqrt[4]{\dfrac{1}{16}}=\dfrac{1}{2}\)

b) \(\left(\sqrt[6]{8}\right)^2=\sqrt[\dfrac{6}{2}]{8}=\sqrt[3]{8}=2\)

c) \(\sqrt[4]{3}\cdot\sqrt[4]{27}=\sqrt[4]{3\cdot27}=\sqrt[4]{81}=3\)

4 tháng 5 2016

Ta có:

\(\left(\frac{1}{4}\right)^{-\frac{3}{2}}=8\) ;

\(2\left(\frac{125}{27}\right)^{-\frac{2}{3}}=2.\frac{9}{25}=\frac{18}{25}\) ;

\(\left(\sqrt{6}+\sqrt{2}\right)\sqrt{2-\sqrt{3}}=2\Rightarrow2^{\left(\sqrt{6}+\sqrt{2}\right)\sqrt{2-\sqrt{3}}}=2^2=4\)

\(\Rightarrow M=8-\frac{18}{25}+4=4\frac{18}{25}\)

4 tháng 5 2016

Ta có \(\left(\sqrt{6}+\sqrt{2}\right)\sqrt{2-\sqrt{3}}=\left(\sqrt{3}+1\right)\sqrt{4-2\sqrt{3}}=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)=2\)

Nên \(B=2^{2\left(-\frac{3}{2}\right)}-2\left(\frac{5}{3}\right)^{3\left(-\frac{2}{3}\right)}+2^2=2^3-2\left(\frac{3}{5}\right)^2+4=\frac{282}{25}\)

21 tháng 10 2016

A = \(\sqrt[3]{10+6\sqrt{3}}+\sqrt[3]{10-6\sqrt{3}}\)

<=> A3 = 20 - 3×2A

<=> A3 + 6A - 20 = 0

<=> A = 2

21 tháng 10 2016

2 câu còn lại làm tương tự