Tìm tất cả các số nguyên tố p sao cho p2 + 11 có đúng 6 ƣớc số nguyên dƣơng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
các bạn ơi giúp mình với mình cần gấp mai nộp rồi
Với p = 2 ta co 2p + p2 = 12 không là số nguyên tố
Với p = 2 ta có 2p + p2 = 17 là số nguyên tố
Với p > 3 ta có p2 + 2p = (p2 – 1) + (2p + 1 )
Vì p lẽ và p không chia hết cho 3 nên p2 – 1 chia hết cho 3 và 2p + 1 chia hết cho 3. Do đó 2p + p2 là hợp số
Vậy với p = 3 thì 2p + p2 là số nguyên tố.
Với p = 2 ta co 2p + p2 = 12 không là số nguyên tố
Với p = 2 ta có 2p + p2 = 17 là số nguyên tố
Với p > 3 ta có p2 + 2p = (p2 – 1) + (2p + 1 )
Vì p lẻ và p không chia hết cho 3 nên p2 – 1 chia hết cho 3 và 2p + 1 chia hết cho 3. Do đó 2p + p2 là hợp số
Vậy với p = 3 thì 2p + p2 là số nguyên tố
Với p = 2 ta co 2p + p2 = 12 không là số nguyên tố
Với p = 2 ta có 2p + p2 = 17 là số nguyên tố
Với p > 3 ta có p2 + 2p = (p2 – 1) + (2p + 1 )
Vì p lẽ và p không chia hết cho 3 nên p2 – 1 chia hết cho 3 và 2p + 1 chia hết cho 3. Do đó 2p + p2 là hợp số
Vậy với p = 3 thì 2p + p2 là số nguyên tố.
HT
p = 2. Vì 2 + 11 = 13 mà 13 là số nguyên tố. Và ngoài số 2 ra, không có số nguyên tố nào là số chẵn mà số 11 khi công với các số lẻ sẽ thành số chẵn.
p = 3; 5; 7; 11; ...( tất cả các số nguyên tố khác 2 )
Xong rùi đó. Chúc bạn học tốt! Nhớ k cho mình nha!
Lời giải:
Nếu $p=2$ thì $p^2+11=15$ chỉ có 4 ước nguyên dương
Nếu $p=3$ thì $p^2+11=20$ có đúng 6 ước nguyên dương
Nếu $p>3$ thì $p$ lẻ
$\Rightarrow p^2\equiv 1\pmod 4$
$\Rightarrow p^2+11\equiv 12\equiv 0\pmod 4(1)$
$p^2\equiv 1\pmod 3$
$\Rightarrow p^2+11\equiv 12\equiv 0\pmod 3(2)$
Từ $(1);(2)$ suy ra $p^2+11\vdots 12$
Đặt $p^2+11=12k$ với $k$ là số tự nhiên lớn hơn $1$
Lúc này, $p^2+11$ có ít nhất các ước nguyên dương sau: $1,2,3,4,6,12,k, 2k, 3k,4k, 6k, 12k$ (nhiều hơn 6 ước nguyên dương rồi)
Vậy $p=3$