K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2016

Xét điểm \(M\left(m;0\right)\in Ox\).

Đường thẳng  d đi qua M, hệ số góc k có phương trình : \(y=k\left(x-m\right)\)

d là tiếp tuyến \(\Leftrightarrow\begin{cases}-x^3+3x+2=k\left(x-m\right)\\-3x^2+3=k\end{cases}\) có nghiệm

Thế k vào phương trình thứ nhất, ta được :

     \(3\left(x^2-1\right)\left(x-m\right)-\left(x^3-3x-2\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x^2-3\left(1+m\right)x+3m\right)-\left(x+1\right)\left(x^2-x-2\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[2x^2-\left(3m+2\right)x+3m+2\right]=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\\2x^2-\left(3x+2\right)x+3m+2=0\left(a\right)\end{array}\right.\) 

Để từ M kẻ được 3 tiếp tuyến thì (a) phải có 2 nghiệm phân biệt khác -1

\(\begin{cases}\Delta=\left(3m+2\right)\left(3m-6\right)>0\\3m+3\ne0\end{cases}\)\(\Leftrightarrow\begin{cases}m< -\frac{2}{3}Vm>2\\m\ne-1\end{cases}\) (*)

Gọi \(x_1;x_2\) là 2 nghiệm của (a), khi đó hệ số góc của 3 tiếp tuyến là :

\(k_1=-3x_1^2+3;k_2=-3x_2^2+3;k_3=0\)

Để 2 trong 3 tiếp tuyến này vuông góc với nhau \(\Leftrightarrow k_1.k_2=-1\)

\(\Leftrightarrow9\left(x^2_1-1\right)\left(x^2_2-1\right)=1\Leftrightarrow9x^2_1x^2_2-9\left(x_1+x_2\right)^2+18x_1x_2+8=0\left(i\right)\)

Mặt khác, theo định lý Viet, \(x_1+x_2=\frac{3m+2}{2};x_1x_2=\frac{3m+2}{2};\)

Từ đó (i) \(\Leftrightarrow9\left(3m+2\right)+8=0\Leftrightarrow m=-\frac{26}{27}\) thỏa mãn điều kiện (*)

Vậy \(M\left(-\frac{26}{27};0\right)\) là điểm cần tìm

 

 

28 tháng 4 2016

Phương trình tiếp tuyến \(\Delta\) tại \(M\left(x_0;-x^3_0+3x_0-2\right)\) là :

\(y=\left(-3x^2_0+3\right)\left(x-x_0\right)-x_0^3+3x_0-2\)

Gọi N (a;0) thuộc trục hoành. Vì \(N\in\Delta\) nên \(0=\left(-3x^2_0+3\right)\left(a-x_0\right)-x_0^3+3x_0-2\)

                           \(\Leftrightarrow\left[\begin{array}{nghiempt}x_0=1\\g\left(x_0\right)=2x_0^2+\left(2-3a\right)x_0+2-3a=0\end{array}\right.\) (*)

Để từ N kẻ được 3 tiếp tuyến đến (C) thì phương trình \(f\left(x_0\right)=0\) phải có hệ nghiệm phân biệt khác 1

Điều này tương đương với :

\(\begin{cases}\Delta=\left(2-3a\right)^2-8\left(2-3a\right)>0\\g\left(1\right)6-6a\ne0\end{cases}\) \(\Leftrightarrow a\in\left(-\infty;-2\right)\cup\left(\frac{2}{3};+\infty\right)\backslash\left\{1\right\}\)

Giả sử \(x_3=1\) thì \(x_1;x_2\) là nghiệm phương trình (*) nên theo Viet ta có :

\(\begin{cases}x_1+x_2=\frac{3a-2}{2}\\x_1.x_2=\frac{2-3a}{2}\end{cases}\)

Ta có \(x_1^3+x_2^3+x_3^3=21\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=20\)

                                      \(\Leftrightarrow\left(3a-2\right)^3+6\left(3a-2\right)^2-160=0\)

                                      \(\Leftrightarrow3a-2=4\Leftrightarrow a=2\) (thỏa mãn)

Vậy ta có \(N\left(2;0\right)\)

8 tháng 11 2017

câu này trình bày như thế nào

NM
16 tháng 5 2021

Xét phương trình tiếp tuyến tổng quát có dạng:

\(y=\left(6x_0+3x_0^2\right)\left(x-x_0\right)+3x_0^2+x_0^3\)

có 3 tiếp tuyến đi qua A(a,0) nên phương trình \(\left(6x_0+3x_0^2\right)\left(a-x_0\right)+3x_0^2+x_0^3=0\) có 3 nghiệm

\(PT\Leftrightarrow\orbr{\begin{cases}x_0=0\\2x_0^2+3\left(1-a\right)x_0+6a=0\end{cases}}\)

Vậy có 1 pttt là y=0

do đó để có hai tiếp tuyến vuông góc thì \(2x_0^2+3\left(1-a\right)x_0+6a=0\) có hia nghiệm \(x_1,x_2\text{ thỏa mãn}\)

\(\left(6x_1+3x_1^2\right)\left(6x_2+3x_2^2\right)=-1\)mà áp dung Viet ta có \(\hept{\begin{cases}x_1+x_2=\frac{3a-3}{2}\\x_1x_2=3a\end{cases}}\)

Nên \(36x_1x_2+18x_1x_2\left(x_1+x_2\right)+9x_1^2x_2^2=-1\Leftrightarrow126a+81a\left(a-1\right)+81a^2=-1\)

từ đây mình giải được a nhé

19 tháng 5 2021

Xét phương trình tiếp tuyến tổng quát có dạng:

y=(6x0+3x02)(x−x0)+3x02+x03

có 3 tiếp tuyến đi qua A(a,0) nên phương trình (6x0+3x02)(a−x0)+3x02+x03=0 có 3 nghiệm

PT⇔[

x0=0
2x02+3(1−a)x0+6a=0

Vậy có 1 pttt là y=0

do đó để có hai tiếp tuyến vuông góc thì 2x02+3(1−a)x0+6a=0 có hia nghiệm x1,x2 thỏa mãn

(6x1+3x12)(6x2+3x22)=−1mà áp dung Viet ta có {

x1+x2=3a−32 
x1x2=3a

Nên 36x1x2+18x1x2(x1+x2)+9x12x22=−1⇔126a+81a(a−1)+81a2=−1

23 tháng 4 2020

hello các bạn

28 tháng 10 2018

Đáp án B.

Gọi   A 0 ; a là điểm trên trục tung thỏa mãn yêu cầu đề bài.

Gọi k là hệ số góc tiếp tuyến đi qua A.

Lúc này ta có hệ  

x 4 − x 2 + 1 = k x − 0 + a 4 x 3 − 2 x = k ⇒ x 4 − x 2 + 1 = 4 x 3 − 2 x x + a

  ⇔ 3 x 4 − x 2 + a − 1 = 0 (*).

Để từ A kẻ được ba tiếp tuyến khác nhau trên đồ thị hàm số   y = x 4 − x 2 + 1 thì phương trình (*) phải có đúng 3 nghiệm phân biệt.

Điều này xảy ra khi và chỉ khi phương trình (*) có 1 nghiệm bằng 0 và 1 nghiệm dương ⇔ a = 1 . Vậy có duy nhất một điểm  trên trục tung thỏa mãn yêu cầu đề bài.

8 tháng 8 2018

27 tháng 4 2016

Xét \(M\left(0;m\right)\in Oy\). Đường thẳng d đi qua M, hệ số góc k có phương trình : \(y=kx+m\)

d là tiếp tuyến \(\Leftrightarrow\begin{cases}x^4-2x^2-1=kx+m\\4x^3-4x=k\end{cases}\) có nghiệm

Thế k vào phương trình thứ nhất, ta được :

\(-x^4-2x^2-1=4x^4-4x^2+m\)

\(\Leftrightarrow5x^4-2x^2+1+m=0\) (*)

Để từ M ta có thể kẻ đến đồ thị đúng 3 tiếp tuyến \(\Leftrightarrow\) (*) có 3 nghiệm phân biệt \(\Leftrightarrow m+1=0\Leftrightarrow m=-1\)

Khi đó (*) có 3 nghiệm \(x=0;x=\pm\sqrt{\frac{2}{5}}\) và 3 tiếp tuyến đó là :

\(y=-1;y=\pm\sqrt{\frac{2}{5}}x-1\)

Vậy \(M\left(0;-1\right)\) là điểm cần tìm