K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 7 2021

ĐKXĐ: \(x\ge2\)

\(\dfrac{\left(\sqrt{3x-5}-\sqrt{x-2}\right)\left(\sqrt{3x-5}+\sqrt{x-2}\right)}{\sqrt{3x-5}+\sqrt{x-2}}=\dfrac{2x-3}{3}\)

\(\Leftrightarrow\dfrac{2x-3}{\sqrt{3x-5}+\sqrt{x-2}}=\dfrac{2x-3}{3}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\Rightarrow x=\dfrac{3}{2}\left(ktm\right)\\\sqrt{3x-5}+\sqrt{x-2}=3\left(1\right)\end{matrix}\right.\)

Xét (1)

\(\Leftrightarrow\sqrt{3x-5}-2+\sqrt{x-2}-1=0\)

\(\Leftrightarrow\dfrac{3\left(x-3\right)}{\sqrt{3x-5}+2}+\dfrac{x-3}{\sqrt{x-2}+1}=0\)

\(\Leftrightarrow\left(x-3\right)\left(\dfrac{3}{\sqrt{3x-5}+2}+\dfrac{1}{\sqrt{x-2}+1}\right)=0\)

\(\Leftrightarrow x-3=0\)  (do \(\dfrac{3}{\sqrt{3x-5}+2}+\dfrac{1}{\sqrt{x-2}+1}>0;\forall x\ge2\))

\(\Leftrightarrow x=3\)

Vậy pt có nghiệm duy nhất \(x=3\)

15 tháng 7 2023

1) \(\sqrt[]{3x+7}-5< 0\)

\(\Leftrightarrow\sqrt[]{3x+7}< 5\)

\(\Leftrightarrow3x+7\ge0\cap3x+7< 25\)

\(\Leftrightarrow x\ge-\dfrac{7}{3}\cap x< 6\)

\(\Leftrightarrow-\dfrac{7}{3}\le x< 6\)

26 tháng 5 2021

\(\left\{{}\begin{matrix}2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)=\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\left(1\right)\\16x^5-20x^3+5\sqrt{xy}=\sqrt{\dfrac{y+1}{2}}\left(2\right)\end{matrix}\right.\).

ĐKXĐ: \(xy>0;y\ge-\dfrac{1}{2}\).

Nhận thấy nếu x < 0 thì y < 0. Suy ra VT của (1) âm, còn VP của (1) dương (vô lí)

Do đó x > 0 nên y > 0.

Với a, b > 0 ta có bất đẳng thức \(\left(a+b\right)^4\le8\left(a^4+b^4\right)\).

Thật vậy, áp dụng bất đẳng thức Cauchy - Schwarz ta có:

\(\left(a+b\right)^4\le\left[2\left(a^2+b^2\right)\right]^2=4\left(a^2+b^2\right)^2\le8\left(a^4+b^4\right)\).

Dấu "=" xảy ra khi và chỉ khi a = b.

Áp dụng bất đẳng thức trên ta có:

\(\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^4\le8\left[8\left(x^4+y^4\right)+16x^2y^2\right]=64\left(x^2+y^2\right)^2\)

\(\Rightarrow\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\le8\left(x^2+y^2\right)\). (3)

Lại có \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2=4\left(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\right)\). (4) 

Áp dụng bất đẳng thức AM - GM ta có \(\dfrac{x^6}{y^4}+xy+xy+xy+xy\ge5x^2;\dfrac{y^6}{x^4}+xy+xy+xy+xy\ge5y^2;3\left(x^2+y^2\right)\ge6xy\).

Cộng vế với vế của các bđt trên lại rồi tút gọn ta được \(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\ge2\left(x^2+y^2\right)\). (5)

Từ (3), (4), (5) suy ra \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2\ge\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\Rightarrow2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)\ge\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\).

Do đó đẳng thức ở (1) xảy ra nên ta phải có x = y.

Thay x = y vào (2) ta được:

\(16x^5-20x^3+5x=\sqrt{\dfrac{x+1}{2}}\). (ĐK: \(x>0\))

PT này có một nghiệm là x = 1 mà sau đó không biết giải ntn :v

 

 

1)

ĐKXĐ: x>4

Ta có: \(\dfrac{\sqrt{x+5}}{\sqrt{x-4}}=\dfrac{\sqrt{x-2}}{\sqrt{x+3}}\)

\(\Leftrightarrow x^2+8x+15=x^2-6x+8\)

\(\Leftrightarrow8x+6x=8-15\)

\(\Leftrightarrow14x=-7\)

hay \(x=-\dfrac{1}{2}\)(loại)

2) Ta có: \(\sqrt{4x^2-9}=3\sqrt{2x-3}\)

\(\Leftrightarrow\sqrt{2x-3}\left(\sqrt{2x+3}-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\2x=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=3\end{matrix}\right.\)

25 tháng 11 2023

2: ĐKXĐ: x>=0

\(\sqrt{3x}-2\sqrt{12x}+\dfrac{1}{3}\cdot\sqrt{27x}=-4\)

=>\(\sqrt{3x}-2\cdot2\sqrt{3x}+\dfrac{1}{3}\cdot3\sqrt{3x}=-4\)

=>\(\sqrt{3x}-4\sqrt{3x}+\sqrt{3x}=-4\)

=>\(-2\sqrt{3x}=-4\)

=>\(\sqrt{3x}=2\)

=>3x=4

=>\(x=\dfrac{4}{3}\left(nhận\right)\)

3: 

ĐKXĐ: x>=0

\(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18}=0\)

=>\(3\sqrt{2x}+5\cdot2\sqrt{2x}-20-3\sqrt{2}=0\)

=>\(13\sqrt{2x}=20+3\sqrt{2}\)

=>\(\sqrt{2x}=\dfrac{20+3\sqrt{2}}{13}\)

=>\(2x=\dfrac{418+120\sqrt{2}}{169}\)

=>\(x=\dfrac{209+60\sqrt{2}}{169}\left(nhận\right)\)

4: ĐKXĐ: x>=-1

\(\sqrt{16x+16}-\sqrt{9x+9}=1\)

=>\(4\sqrt{x+1}-3\sqrt{x+1}=1\)

=>\(\sqrt{x+1}=1\)

=>x+1=1

=>x=0(nhận)

5: ĐKXĐ: x<=1/3

\(\sqrt{4\left(1-3x\right)}+\sqrt{9\left(1-3x\right)}=10\)

=>\(2\sqrt{1-3x}+3\sqrt{1-3x}=10\)

=>\(5\sqrt{1-3x}=10\)

=>\(\sqrt{1-3x}=2\)

=>1-3x=4

=>3x=1-4=-3

=>x=-3/3=-1(nhận)

6: ĐKXĐ: x>=3

\(\dfrac{2}{3}\sqrt{x-3}+\dfrac{1}{6}\sqrt{x-3}-\sqrt{x-3}=-\dfrac{2}{3}\)

=>\(\sqrt{x-3}\cdot\left(\dfrac{2}{3}+\dfrac{1}{6}-1\right)=-\dfrac{2}{3}\)

=>\(\sqrt{x-3}\cdot\dfrac{-1}{6}=-\dfrac{2}{3}\)

=>\(\sqrt{x-3}=\dfrac{2}{3}:\dfrac{1}{6}=\dfrac{2}{3}\cdot6=\dfrac{12}{3}=4\)

=>x-3=16

=>x=19(nhận)

25 tháng 9 2021

\(\sqrt{x^2-9}-3\sqrt{x-3}=0\left(đk:x\ge3\right)\)

\(\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\)

\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=9\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)

25 tháng 9 2021

\(ĐK:x\le-3;x\ge3\\ PT\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-3=0\\\sqrt{x+3}=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x+3=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)

7 tháng 11 2021

ĐK: \(x\ge\dfrac{5}{3}\)

Ta có: \(\sqrt{2x+5}=2+\sqrt{3x-5}\)

      \(\Leftrightarrow2x+5=4+3x-5+4\sqrt{3x-5}\)

      \(\Leftrightarrow6-x=4\sqrt{3x-5}\)                    ĐK: x≤6

      \(\Leftrightarrow36-12x+x^2=48x-80\)

      \(\Leftrightarrow x^2-60x+116=0\)

      \(\Leftrightarrow\left(x-2\right)\left(x-58\right)=0\)

      \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=58\end{matrix}\right.\)

So với điều kiện thì phương trình có nghiệm duy nhất là x = 2

7 tháng 11 2021

\(ĐK:x\ge\dfrac{5}{3}\\ PT\Leftrightarrow\left(\sqrt{2x+5}-3\right)-\left(\sqrt{3x-5}-1\right)=0\\ \Leftrightarrow\dfrac{2x-4}{\sqrt{2x+5}+3}-\dfrac{3x-6}{\sqrt{3x-5}+1}=0\\ \Leftrightarrow\left(x-2\right)\left(\dfrac{2}{\sqrt{2x+5}+3}-\dfrac{3}{\sqrt{3x-5}+1}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\\dfrac{2}{\sqrt{2x+5}+3}=\dfrac{3}{\sqrt{3x-5}+1}\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2\sqrt{3x-5}+2=3\sqrt{2x+5}+9\\ \Leftrightarrow2\sqrt{3x-5}=7+3\sqrt{2x+5}\\ \Leftrightarrow4\left(3x-5\right)=49+9\left(2x+5\right)+42\sqrt{2x+5}\\ \Leftrightarrow12x-20=49+18x+45+42\sqrt{2x+5}\\ \Leftrightarrow-6x-144=42\sqrt{2x+5}\)

Vì \(x\ge\dfrac{5}{3}>0\Leftrightarrow-6x-144< 0< 42\sqrt{2x+5}\)

Do đó (1) vô nghiệm

Vậy PT có nghiệm \(x=2\)