Chứng minh rằng:
\(\frac{a}{n\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\) ( \(n\),\(a\)\(\in\) \(N\)*)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng:
a) \(\frac{a}{n\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\left(n,a\in Nsao\right)\)
ta có \(\frac{1}{n}-\frac{1}{n+a}=\frac{n+a}{n\left(n+a\right)}-\frac{n}{n\left(n+a\right)}=\frac{n+a-n}{n\left(n+a\right)}=\frac{a}{n\left(n+a\right)}\)
vậy \(\frac{a}{n\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\)
chứng minh : \(\frac{a}{n\times\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\left(n;a\in Nsao\right)\)
xét \(\frac{a}{n.\left(n+a\right)}=\frac{\left(n+a\right)-n}{n.\left(n+a\right)}=\frac{n+a}{n.\left(n+a\right)}-\frac{n}{n.\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\)
vậy ............................
Ta có :
\(1-\frac{3}{n\left(n+2\right)}=\frac{n^2+2n-3}{n\left(n+2\right)}=\frac{\left(n-1\right)\left(n+3\right)}{n\left(n+2\right)}\)
\(\Rightarrow A=\frac{1.5}{2.4}.\frac{2.6}{3.5}...\frac{\left(n-1\right)\left(n+3\right)}{n\left(n+2\right)}\)
\(=\left(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{n-1}{n}\right)\left(\frac{5}{4}.\frac{6}{5}.\frac{7}{6}...\frac{n+3}{n+2}\right)\)
\(=\frac{1}{n}.\frac{n+3}{4}=\frac{n+3}{n}.\frac{1}{4}\ge\frac{1}{4}\left(dpcm\right)\)
\(\frac{1}{n}-\frac{1}{n+a}=\frac{n+a}{n.\left(n+a\right)}-\frac{n}{n.\left(n+a\right)}=\frac{a}{n.\left(n+a\right)}\)
\(\left(đpcm\right)\)
Chúc bạn học tốt !!!!
\(\frac{1}{n}-\frac{1}{n +a}=\frac{n+a}{n\left(n+a\right)}-\frac{n}{n\left(n+a\right)}=\frac{n+a-n}{n\left(n+a\right)}=\frac{a}{n\left(n+a\right)}\)
a) \(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\)
b) \(\frac{1}{q}\left(\frac{1}{n}-\frac{1}{n+q}\right)=\frac{1}{q}\left(\frac{n+q}{n\left(n+q\right)}-\frac{n}{n\left(n+q\right)}\right)=\frac{1}{q}.\frac{q}{n\left(n+q\right)}=\frac{1}{n\left(n+q\right)}\)
a/ Xét mẫu số VP_ n và n+1 là 2 số liên tiếp
\(\Rightarrow\left(n,n+1\right)\)bằng 1
Thay vào đề bài \(\frac{1}{n}-\frac{1}{n+1}\)bằng \(\frac{n+1}{n.\left(n+1\right)}-\frac{n}{n.\left(n+1\right)}\)bằng \(\frac{1}{n\cdot\left(n+1\right)}\)
\(\Rightarrowđpcm\)
P/s _laptop ko gõ đc dấu
Ta có: \(\frac{a}{n\left(n+a\right)}=\frac{\left(n+a\right)-n}{n\left(n+a\right)}=\frac{\left(n+a\right)}{n\left(n+a\right)}-\frac{n}{n\left(n+a\right)}\)
\(=\frac{1}{n}-\frac{1}{n+a}\)
Ta có: \(\frac{1}{n}-\frac{1}{n+a}=\frac{1.\left(n+a\right)-1.n}{n\left(n+a\right)}=\frac{n+a-n}{n\left(n+a\right)}=\frac{n-n+a}{n\left(n+a\right)}=\frac{a}{n\left(n+a\right)}\)
Mà \(\frac{a}{n\left(n+a\right)}=\frac{a}{n\left(n+a\right)}=>\frac{a}{n\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}ĐPCM\)
Nguyễn Hữu Thế cảm ơn nha