Bài 1 Cho tam giác DEF cân tại D với đường trung tuyến DI a/ Chứng minh : ∆ DEI = ∆DFI b/ Các góc DIE và góc DIF là những góc gì ? c/ Biết DI = 12cm , EF = 10cm . Hãy tính độ dài cạnh DE.Bài 2 Cho DABC biết AB = 3cm, AC = 4cm, BC = 5cm. Trên tia đối của tia AC lấy điểm D sao cho AD =AC a) Chứng minh tam giác ABC vuông b) Chứng minh DBCD cân c)Gọi E là trung điểm của BD, CE cắt AB tại O. Tính OA, OC Bài...
Đọc tiếp
Bài 1 Cho tam giác DEF cân tại D với đường trung tuyến DI
a/ Chứng minh : ∆ DEI = ∆DFI
b/ Các góc DIE và góc DIF là những góc gì ?
c/ Biết DI = 12cm , EF = 10cm . Hãy tính độ dài cạnh DE.
Bài 2 Cho DABC biết AB = 3cm, AC = 4cm, BC = 5cm. Trên tia đối của tia AC lấy điểm D sao cho
AD =AC
a) Chứng minh tam giác ABC vuông
b) Chứng minh DBCD cân
c)Gọi E là trung điểm của BD, CE cắt AB tại O. Tính OA, OC
Bài 3: (Đề Đông Hà năm học 2015 - 2016)
Cho tam giác ABC vuông tại A và đường phân giác BD. Kẻ DE vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh rằng:
a) ∆ ABD = ∆ EBD
b) BD AE
c) BD đi qua trung điểm của CF
Bài 4:
Cho tam giác ABC cân tại A, vẽ AH vuông góc với BC tại H. Biết AB=5cm, BC= 6cm.
a) Chứng minh BH =HC.
b) Tính độ dài BH, AH.
c) Gọi G là trọng tâm của tam giác ABC. Chứng minh rằng A, G, H thẳng hàng.
d) Chứng minh góc ABG= góc ACG
Bài 5.
Cho DABC có góc C = 900 ; BC = 3cm; CA = 4cm. Tia phân giác BK của góc ABC (K Î CA); từ K kẻ
KE ^ AB tại E.
a) Tính AB.
b) Chứng minh BC = BE.
c) Tia BC cắt tia EK tại M. So sánh KM và KE.
d) Chứng minh CE // MA
Bài 6:
Cho tam giác ABC vuông tại A, đường phân giác BE. Kẻ EH vuông góc với BC (H BC). Gọi K là giao điểm của AB và HE. Chứng minh rằng:
a) Tam giác ABE=tam giác HBE
b) BE là đường trung trực của đoạn thẳng AH.
c) EK = EC.
d) AE < EC.
Mình hơi lười nên chỉ cho bạn và làm tắt tí nha!
a) Vì \(\Delta DEF\) cân tại D \(\Rightarrow DE=DF\); có đường trung tuyến DI \(\Rightarrow EI=FI\)
Cùng với DI chung dễ dàng chứng minh \(\Delta DEI=\Delta DFI\left(c.c.c\right)\)\
b) Vì \(EF=10cm\Rightarrow EI=5cm\). Vì DI là đường trung tuyến của \(\Delta DEF\) cân tại D
\(\Rightarrow\widehat{DEI}=90^0\). Áp dụng ĐL Pytago vào \(\Delta DEI\Rightarrow DE=13cm\)
c) Vì G là trọng tâm \(\Delta DEF\) nên \(DG=\frac{2}{3}DI\Rightarrow IG=\frac{1}{3}DI\Leftrightarrow IG=IM\)
Vì D ; G ; I ; M thẳng hàng \(\Rightarrow\widehat{EIG}=\widehat{FIM}=90^0\). Cùng với \(EI=FI\left(cmt\right)\)
\(\Rightarrow\Delta EIG=\Delta FIM\left(c.g.c\right)\Rightarrow\widehat{EGI}=\widehat{FMI}\) ( tương ứng )
Mà 2 góc so le trong \(\Rightarrow EM//FG\left(đpcm\right)\)
Mik làm câu a
a) Xét 2 tam giác: ΔDEI và Δ DFI có: DI là cạnh chung DE=DF (2 cạnh bên của Δ cân) Vì ΔDEF là Δ cân nên DI là đường trung tuyến đồng thời là đường trung trực của EF <=> EI=IF Vậy ΔDEI =ΔDFI (c. c. c)