K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2016

Ta chứng minh hai mệnh đề.

a) Cho   =  thì AD và BC có trung điểm trùng nhau. Gọi I là trung điểm của AD ta chứng minh I cũng là trung điểm của BC.

Theo quy tắc của ba điểm của tổng, ta có  =  + ;

 = 

Vì  =  nên  +  =  

=>  –  =  – 

=>  +  =  +               (1)

Vì I là trung điểm của AD nên   +  =                (2)

Từ (1) và (2) suy ra  +  =                                (3)

Đẳng thức (3) chứng tỏ I là trung điểm của BC.

b) AD và BC  có chung trung điểm I, ta chứng minh  = .

I là trung điểm của AD    =>   +  =    =>  –  =

I là trung điểm của BC    =>  +  =     =>   – 

Suy ra   –  =   – 

=>  +  =  +     =>   = (đpcm)

6 tháng 12 2018

Giải bài 9 trang 12 sgk Hình học 10 | Để học tốt Toán 10

Gọi trung điểm của AD là I, trung điểm BC là J.

Khi đó ta có: Giải bài 9 trang 12 sgk Hình học 10 | Để học tốt Toán 10

Mà theo quy tắc ba điểm ta có:

Giải bài 9 trang 12 sgk Hình học 10 | Để học tốt Toán 10

⇔ I ≡ J hay trung điểm AD và BC trùng nhau (đpcm)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Với 4 điểm A, B, C, D ta có: \(\overrightarrow {AB}  = \overrightarrow {CD} \) khi và chỉ khi tứ giác ABDC là hình bình hành

Theo tính chất của hình bình hành thì giao điểm của hai đường chéo là trung điểm của mỗi đường và ngược lại.

Nói cách khác: trung điểm của hai đoạn thẳng AD và BC trùng nhau.

Vậy ta có điều phải chứng minh.

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Với 4 điểm A, B, C, D ta có: \(\overrightarrow {AB}  = \overrightarrow {CD} \) khi và chỉ khi tứ giác ABDC là hình bình hành

Theo tính chất của hình bình hành thì giao điểm của hai đường chéo là trung điểm của mỗi đường và ngược lại.

Nói cách khác: trung điểm của hai đoạn thẳng AD và BC trùng nhau.

Vậy ta có điều phải chứng minh.

30 tháng 3 2017

Nếu \(\overrightarrow{AB}=\overrightarrow{CD}\) thì AD và BC có trung điểm trùng nhau. Gọi I là trung điểm của AD ta chứng minh I cũng là trung điểm của BC.

Theo quy tắc của ba điểm của tổng, ta có

\(\overrightarrow{AB}=\overrightarrow{AI}+\overrightarrow{IB};\overrightarrow{CD}=\overrightarrow{CI}+\overrightarrow{ID}\)

\(\overrightarrow{AB}=\overrightarrow{CD}\) nên \(\overrightarrow{AI}+\overrightarrow{IB}=\overrightarrow{CI}+\overrightarrow{ID}\)

\(\Rightarrow\overrightarrow{AI}-\overrightarrow{ID}=\overrightarrow{CI}-\overrightarrow{IB}\)

\(\Rightarrow\overrightarrow{AI}+\overrightarrow{DI}=\overrightarrow{CI}+\overrightarrow{BI}\left(1\right)\)

Vì I là trung điểm của AD nên \(\overrightarrow{AI}+\overrightarrow{DI}=\overrightarrow{0}\left(2\right)\)

Từ (1) và (2) suy ra \(\overrightarrow{CI}+\overrightarrow{BI}=\overrightarrow{0}\left(3\right)\)

Từ (3) ta có chung điểm I, ta chứng minh \(\overrightarrow{AB}=\overrightarrow{CD}\)

I là trung điểm AD \(\Rightarrow\overrightarrow{AI}+\overrightarrow{DI}=\overrightarrow{0}\Rightarrow\overrightarrow{AI}-\overrightarrow{ID}=\overrightarrow{0}\)

I là trung điểm BC \(\Rightarrow\overrightarrow{CI}+\overrightarrow{BI}=0\Rightarrow\overrightarrow{CI}-\overrightarrow{IB}=\overrightarrow{0}\)

Suy ra \(\overrightarrow{AI}-\overrightarrow{ID}=\overrightarrow{CI}-\overrightarrow{IB}\)

\(\Rightarrow\overrightarrow{AI}+\overrightarrow{IB}=\overrightarrow{CI}+\overrightarrow{ID}\Rightarrow\overrightarrow{AB}=\overrightarrow{CD}\)





Bài 1 :

a) M là trung điểm của đoạn thẳng AB 

\(\Rightarrow MA=MB=\frac{1}{2}AB\). Thật vậy : Do M là trung điểm của AB nên theo đĩnh nghĩa ta có  

:\(MA+MB=AB\)VÀ \(MA=MB\)

\(\Rightarrow2MA=2MB=AB\)

\(\Rightarrow MA=MB\frac{1}{2}AB\)

b) Nếu \(MA=MB=\frac{1}{2}AB\Rightarrow\)M là trung điểm của đoạn thằng AB

Từ \(MA=MB=\frac{1}{2}AB\Rightarrow MA+MB=\frac{1}{2}AB+\frac{1}{2}AB=AB\)

Vậy \(MA+MB=AB\)VÀ \(MA=MB\)

Chứng tỏ M là trung điểm đoạn thẳng AB

Bài 2 :

Gọi O là trung điểm chung của AB VÀ CD. Ta có:

Gỉa sử :A và C cùng phía đối với O 

Ta thấy rằng 

\(\hept{\begin{cases}AC=OC-OA\\BD=OD-OB\end{cases}}\)

\(\Leftrightarrow\)\(AC=BD\)

\(\hept{\begin{cases}AD=OA+OD\\BC=OB+OC\end{cases}}\)

\(\Leftrightarrow AD=BC\)

Trường hợp A,C khác phía đối với O chứng minh tương tự

Mk k vẽ được hình xin lỗi bạn nhiều nha!

Chúc bạn học tốt ( -_- )

19 tháng 2 2018

O A D B C 1 2

Xét tam giác ADO và tam giác CBO có :

     O1 = O2 ( đối đỉnh )

    CO = OD ( gt )

    AO = OB ( gt ) 

Suy ra tam giác ADO = tam giác CBO

=> \(\widehat{ADO}=\widehat{OCB}\)( 2 góc tương ứng ) mà 2 góc này ở vị trí so le trong

=> AD // BC

    

4 tháng 1 2016

A D C O N M B

Xét \(\Delta\)AOD & \(\Delta\)COB có:

OA=OC(vì O là trung điểm AC)

góc AOD= góc COB(2 góc đối đỉnh)

OD=OB(vì O là trung điểm BD)

=>\(\Delta\)AOD=\(\Delta\)COB(c.g.c)

=>AD=CB(2 cạnh tương ứng)(1)

Vì N là trung điểm của AD

=>AN=ND=AD/2(2)

Vì M là trung điểm BC

=>MB=MC=BC/2(3)

Từ (1);(2);(3)=>AN=MC

Xét \(\Delta\)NOA & \(\Delta\)MOC có:

AN=MC(theo c/m trên)

ON=OM(vì O là trung điểm MN)

OA=ỌC(vì O là trung điểm AC)

=>\(\Delta\)NOA=\(\Delta\)MOC(c.c.c)

=>góc NOA= góc MOV(2 góc tương ứng)

Ta có: góc =180 độ

=>góc NOA+ góc NOC= 180 độ(2 góc kề bù)

=>góc MOC+góc NỚC=180 độ

=>góc NOM=180 độ

=>N,O,M thẳng hàng

 

 

Xét tứ giác ABDC có

AD cắt BC tại trung điểm của mỗi đường

nên ABDC là hình bình hành

Suy ra: vecto AC=vecto BD