Tìm n là số tự nhiên để (n3 - n +1 ) chia hết cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
11:
n^3-n^2+2n+7 chia hết cho n^2+1
=>n^3+n-n^2-1+n+8 chia hết cho n^2+1
=>n+8 chia hết cho n^2+1
=>(n+8)(n-8) chia hết cho n^2+1
=>n^2-64 chia hết cho n^2+1
=>n^2+1-65 chia hết cho n^2+1
=>n^2+1 thuộc Ư(65)
=>n^2+1 thuộc {1;5;13;65}
=>n^2 thuộc {0;4;12;64}
mà n là số tự nhiên
nên n thuộc {0;2;8}
Thử lại, ta sẽ thấy n=8 không thỏa mãn
=>\(n\in\left\{0;2\right\}\)
\(2n+7=\left(n+3\right)+\left(n+4\right)=\left(n+3\right)+\left(n+3\right)+1\)
\(Ta\) \(Co\)\(:\) \(\frac{\left(n+3\right)+\left(n+3\right)+1}{n+3}\)\(=2+\frac{1}{n+3}\)
\(De\) \(\left(2n+7\right)^._:\left(n+3\right)\) \(=>\)\(1chia\vec{ }het\vec{ }cho\vec{ }n+3\)
=>n+3 \(\in U_{\left(1\right)}\)
ta co : \(U_{\left(1\right)}\in\left(1;-1\right)\)
ta co bang :
n+3 | 1 | -1 |
n | -2 | -4 |
vi n \(\in\)N
=>n khong co gia tri
* n = 3k
A = 2ⁿ - 1 = 2^3k - 1 = 8^k - 1 = (8-1)[8^(k-1) + 8^(k-2) +..+ 8 + 1] = 7p chia hết cho 7
* n = 3k+1
A = 2^(3k+1) -1 = 2.2^3k - 1 = 2(8^k - 1) + 1 = 2*7p + 1 chia 7 dư 1
* n = 3k+2
A = 2^(3k+2) -1 = 4.8^k -1 = 4(8^k - 1) + 3 = 4*7p + 3 chia 7 dư 3
Tóm lại A = 2ⁿ -1 chia hết cho 7 khi và chỉ khi n = 3k (k nguyên dương)
n+ 7 chia hết cho n +1
n + 1 + 6 chia hết cho n + 1
6 chia hết cho n + 1
n + 1 thuộc Ư(6) = {1;2;3;6}
n + 1 = 1 => n =0
n + 1 = 2 => n =1
n + 1 = 3 => n = 2
n + 1 = 6 => n = 5
Vậy n thuộc {0;1;2;5}
câu a) 2n+1 chia hết cho 3
--> 2(n+3)-5 chia hết cho 3
mà 2(n+3) chia hết cho n +3
-->-5 chia hết cho n+3
-->n+3 C Ư(-5)={-1;-5;1;5}
-->n={-4;-8;-2;2}
______________________
li-ke cho mk nhé bn
a) 2n+1 chia hết cho n+3
=>2n+6-6+1 chia hết cho n+3
=>2.(n+3)-5 chia hết cho n+3
=>5 chia hết cho n+3
=>n+3=Ư(5)=(1,5)
=>n=(-2,2)
mà n thuộc N
=>n=2