K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2021

\(\frac{1}{1.4}\)\(+\)\(\frac{1}{4.7}\)\(+\)\(\frac{1}{7.10}\)\(+...+\)\(\frac{1}{100.103}\)

\(=\)\(\frac{1}{3}\)\(\times\)\(\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{101}-\frac{1}{103}\right)\)

\(=\)\(\frac{1}{3}\)\(\times\)\(\left(\frac{1}{1}-\frac{1}{103}\right)\)

\(=\)\(\frac{1}{3}\)\(\times\)\(\frac{102}{103}\)

\(=\)\(\frac{34}{103}\)

28 tháng 7 2021

Sửa đề

\(\frac{8}{9}\)\(-\)\(\frac{1}{72}\)\(-\)\(\frac{1}{56}\)\(-\)\(\frac{1}{42}\)\(-...-\)\(\frac{1}{6}\)\(-\)\(\frac{1}{2}\)

\(=\)\(\frac{8}{9}\)\(-\)\(\left(\frac{1}{72}+\frac{1}{56}+\frac{1}{42}+...+\frac{1}{6}+\frac{1}{2}\right)\)

\(=\)\(\frac{8}{9}\)\(-\)\(\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\right)\)

\(=\)\(\frac{8}{9}\)\(-\)\(\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\right)\)

\(=\)\(\frac{8}{9}\)\(-\)\(\left(1-\frac{1}{9}\right)\)

\(=\)\(\frac{8}{9}\)\(-\)\(\frac{8}{9}\)

\(=\)\(0\)

24 tháng 8 2015

\(\frac{x}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+....+\frac{1}{100.103}=\frac{102}{103}\)

\(\Leftrightarrow\frac{x-1}{1.4}+\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{100.103}\right)=\frac{102}{103}\)

\(\Leftrightarrow\frac{3\left(x-1\right)}{1.4}+\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)=\frac{306}{103}\)

\(\Leftrightarrow\frac{3\left(x-1\right)}{1.4}+\frac{102}{103}=\frac{306}{103}\)

\(\Leftrightarrow\frac{3}{4}\left(x-1\right)=\frac{204}{103}\)

\(\Leftrightarrow x-1=\frac{272}{103}\)

\(\Leftrightarrow x=\frac{375}{103}\)

24 tháng 8 2015

OLM xem đi em lm đúng ko

22 tháng 4 2015

s=(1-1/4+1/4-1/7+1/7-1/10+...+1/100-1/103)+(1/103-1/104+1/104-1/105+1/105-1/106+1/106-1/107)

  =(1-1/103)+(1/103-1/107)

  =1           -         1/107

  =106/107

 

24 tháng 8 2015

 

=> 3x/4+3/4.7+3/7.10+...+3/100.103=306/103(nhân cả 2 vế của đt lên 2)

=>3x/4+(1/4-1/7)+(1/7-1/10)+...+(1/100-1/103)=306/103

=>3x/4+1/4-1/103+=306/103

=>3x/4+99/412=306/103

=>3x/4=306/103-99/412=1125/412

=>x=1125/412:3/4

=>x=1125/309

( nếu thấy đúng thì tick cho mk nha

3 tháng 5 2019

\(B=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)

\(B=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(B=\frac{1}{3}.\left(1-\frac{1}{103}\right)\)

\(B=\frac{1}{3}.\frac{102}{103}\)

\(B=\frac{34}{103}\)

3 tháng 5 2019

Bài 3: đổi ra phân số rồi tính, đổi:\(1,5=\frac{15}{10};2,5=\frac{25}{10};1\frac{3}{4}=\frac{7}{12}\)(cái này ko giải dùm, đổi ra như thek rồi tính nha)

\(B=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{100.103}\)

\(=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{100.103}\right)\)

\(=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(=\frac{1}{3}.\left(1-\frac{1}{103}\right)\)

\(=\frac{1}{3}.\frac{102}{103}\)

\(=\frac{1}{1}.\frac{34}{103}=\frac{34}{103}\)

1 tháng 4 2018

1. Tìm x

\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}=x\)

\(\Rightarrow\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}=x\)

\(\Rightarrow1-\frac{1}{100}=x\)

\(\Rightarrow x=\frac{99}{100}\)

\(2.Tính\)

\(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)

\(=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{11}-\frac{1}{12}\)

\(=\frac{1}{5}-\frac{1}{12}=\frac{7}{60}\)

học vui!!

1 tháng 4 2018

Xin lỗi nha. Bài 1 mk làm sai. Lại nè:

\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}=x\)

\(\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)=x\)

\(\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)=x\)

\(\frac{1}{3}.\left(1-\frac{1}{100}\right)=x\)

\(\frac{1}{3}\cdot\frac{99}{100}=x\)

\(\frac{33}{100}=x\)

21 tháng 6 2017

Võ Thiện Tuấn viết tổng quát kết quả hay phép đề bài hả bạn ?

21 tháng 6 2017

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7} +....+\frac{1}{100}-\frac{1}{103}\)

\(=1-\frac{1}{103}\)

\(=\frac{102}{103}\)

9 tháng 4 2015

a)\(\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{91.94}+\frac{2}{94.97}\)

=\(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{91}-\frac{1}{94}+\frac{1}{94}-\frac{1}{97}\)(giản ước các phân số giống nhau)

=\(\frac{1}{1}-\frac{1}{97}\)

=\(\frac{96}{97}\)

9 tháng 4 2015

a)    gọi \(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.11}+...+\frac{2}{94.97}\)

               \(\Rightarrow\frac{3}{2}A=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{94.97}\)

                     \(\frac{3}{2}A=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{94}-\frac{1}{97}\)(rút gọn các phân số giống nhau)

                      \(\frac{3}{2}A=\frac{1}{1}-\frac{1}{97}\)

                       \(\frac{3}{2}A=\frac{96}{97}\left(1\right)\)

                       từ \(\left(1\right)\Leftrightarrow A=\frac{96}{97}\div\frac{3}{2}=\frac{64}{97}\)

b)\(\left(1-\frac{1}{7}\right).\left(1-\frac{1}{8}\right).\left(1-\frac{1}{9}\right).....\left(1-\frac{1}{2011}\right)\)

    \(=\frac{6}{7}.\frac{7}{8}.\frac{8}{9}......\frac{2010}{2011}\)

 \(=\frac{6.7.8.9.....2010}{7.8.9......2011}\)(rút gọn các số giống nhau)

\(=\frac{6}{2011}\)

25 tháng 1 2017

\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

\(\Rightarrow\frac{99}{100}=\frac{0.33.x}{2009}\)

\(\Rightarrow100.0.33.x=99.2009\)

\(\Rightarrow0x=198891\Rightarrow\)không có GT x thỏa mãn

23 tháng 11 2016

\(A=\frac{1}{1.4}-\frac{1}{4.7}-\frac{1}{7.10}-...-\frac{1}{2011.2014}\)

\(A=\frac{1}{1.4}-\left(\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{2011.2014}\right)\)

Đặt \(B=\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{2011.2014}\)

\(B=\frac{1}{3}.\left(\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{2011.2014}\right)\)

\(B=\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{2011}-\frac{1}{2014}\right)\)

\(B=\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{2014}\right)\)

\(B=\frac{1}{3}.\frac{1005}{4028}=\frac{335}{4028}\)

\(A=\frac{1}{4}-\frac{335}{4028}=\frac{168}{1007}\)

23 tháng 11 2016

A = \(\frac{1}{1.4}-\frac{1}{4.7}-\frac{1}{7.10}-...-\frac{1}{2011.2014}\)

A = 1 + \(\frac{1}{4}\) - \(\frac{1}{4}\) + \(\frac{1}{7}\) - \(\frac{1}{7}\) + \(\frac{1}{10}\) -....- \(\frac{1}{2011}\) + \(\frac{1}{2014}\)

A = 1 + \(\frac{1}{2014}\) = \(\frac{2015}{2014}\)