K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2016

n=1;3;...

a) Để A có giá trị nguyên thì \(n-5⋮n+1\)

\(\Leftrightarrow n+1-6⋮n+1\)

mà \(n+1⋮n+1\)

nên \(-6⋮n+1\)

\(\Leftrightarrow n+1\inƯ\left(-6\right)\)

\(\Leftrightarrow n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

hay \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)

Vậy: \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)

b)

Ta có: \(A=\dfrac{n-5}{n+1}\)

\(=\dfrac{n+1-6}{n+1}\)

\(=1-\dfrac{6}{n+1}\)

Để A là phân số tối giản thì ƯCLN(n-5;n+1)=1

\(\LeftrightarrowƯCLN\left(6;n+1\right)=1\)

\(\Leftrightarrow n+1⋮̸6\)

\(\Leftrightarrow n+1\ne6k\left(k\in N\right)\)

\(\Leftrightarrow n\ne6k-1\left(k\in N\right)\)

Vậy: Khi \(n\ne6k-1\left(k\in N\right)\) thì A là phân số tối giản

26 tháng 5 2016

\(A=\frac{n-5}{n+1}\)

Để A có giá trị nguyên 

=> n-5 chia hết n+1 

=> (n+1)-6 chia  hết n+1

=> n+1 \(\in\)Ư (6) = \(\left(\text{±}1;\text{±}2;\text{±}3\text{;±}6\right)\)

Ta có bảng : 

n+11-12-23-36-6
n0-21-32-45-7

Câu b tự làm

26 tháng 5 2016

a, Để a nguyên thì n-5 chia hết cho n+1

suy ra n-1+6 chia hết cho n-1

Do n-1 chia hết cho n-1 nên 6 chia hết cho n-1

Mà n thuộc Z nên n-1 thuộc Z suy ra n-1 thuộc {1;-1;2;-2;3;-3;6;-6}

suy ra n thuộc {2;0;3;-1;4;-2;7;-5}

Mà n khác -1 nên n thuộc {2;0;3;4;-2;7;-5}

b, Gọi d là ước nguyên tố chung của n-5 và n+1

Suy ra n-5 chia hết cho d, n+1 chia hết cho d

Suy ra (n+1)-(n-5) chia hết cho d

suy ra n+1-n+5 chia hết cho d hay 6 chia hết cho d

Do d nguyên tố nên d thuộc {2;3}

Với d=2 thì n-5 và n+1 chia hết cho 2, n=2k+1(k thuộc Z)

Với d=3 thif n-5 và n+1 chia hết cho 3, n=3k+2(k thuộc Z)

Vây với n khác dạng 2k+1 và 3k+2 (k thuộc Z) thì A tối giản

11 tháng 5 2021

Ta có công thức \(\frac{1}{k\left(k+1\right)}=\frac{1}{k}-\frac{1}{k+1}\)(bạn tự lên mạng coi cách chứng minh nha)

Áp dụng vào bài suy ra \(\frac{1}{1.2}=1-\frac{1}{2};\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3};...;\frac{1}{49.50}=\frac{1}{49}-\frac{1}{50}\)

Cộng theo vế ta được \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}< 1\)(đpcm)

11 tháng 5 2021

để A=5/n-1 là phân số thì n#1

để A=5/n-1 là số nguyên thì 5 chia hết cho n-1 

suy ra n-1 thuộc Ư(5)={1;-1;5;-5}

lập bảng ta có n={2;0;6;-4}

ta có ước của hai số nguyên liên tiếp bằng 1

suy ra Ư(n: n-1)=1 vậy n/n-1 là phân số tối giản

ta có 1/1x2+1/2x3+1/3x4+....+1/49/50

       =1/1-1/2+1/2-1/3+1/4-1/5 +......+1/49-1/50

       =1-1/50

       =49/50<1

vậy 1/1x2+1/2x3+1/3x4+.....+1/49x50<1

14 tháng 3 2015

hồi nãy nhấn nhầm, tiếp nhé.

=> 3 chia hết cho (n-2) (Vì n-2 chia hết n-2)

=> n-2 thuộc Ư(3)={-1;1;-3;3}

n-2-113-3
n135

-1

Vậy n thuộc{ 1; 3 ; 5 ; -1 }

 

5 tháng 8 2016

Pn học toán 6 ơi pn có thể giải tất cả ra đc k

3 tháng 4 2016

Có : \(\frac{n-5}{n+1}=\frac{\left(n+1\right)-6}{n+1}=\frac{n+1}{n+1}-\frac{6}{n+1}=1-\frac{6}{n+1}\)

Để \(1-\frac{6}{n+1}\in Z\Leftrightarrow\frac{6}{n+1}\in Z\)

=> n + 1 thuộc Ư 6 => n + 1 = { - 6 ; - 3 ; - 2 ; - 1 ; 1 ; 2 ; 3 ; 6 }

=> n = { - 7 ; - 4 ; - 3 ; - 2 ; 0 ; 1 ; 2 ; 5 }

11 tháng 2 2021

cảm ơn bạn

 

4 tháng 7 2019

a) Ta có:

Để A là phân số <=> n + 4 \(\ne\)0 <=> n \(\ne\)-4

b) Với : + )n = 1 => \(A=\frac{1+5}{1+4}=\frac{6}{5}\)

+) n = -1 => \(A=\frac{-1+5}{-1+4}=\frac{4}{3}\)

c) Ta có: \(A=\frac{n+5}{n+4}=\frac{\left(n+4\right)+1}{n+4}=1+\frac{1}{n+4}\)

Để A \(\in\)Z <=> 1 \(⋮\)n + 4

      <=> n + 4 \(\in\)Ư(1) = {1; -1}

Lập bảng :

n + 41 -1
   n-3 -5

Vậy ....

4 tháng 7 2019

1a) Để A là phân số thì n \(\ne\)- 4 ; n 

b) + Khi n = 1 

=> \(A=\frac{n+5}{n+4}=\frac{1+5}{1+4}=\frac{6}{5}\)

+ Khi n = -1 

=> \(A=\frac{n+5}{n+4}=\frac{-1+5}{-1+4}=\frac{4}{3}\)

 c) Để \(A\inℤ\)

=> \(n+5⋮n+4\)

=> \(n+4+1⋮n+4\)

Ta có : Vì \(n+4⋮n+4\)

=> \(1⋮n+4\)

=> \(n+4\inƯ\left(1\right)\)

=> \(n+4\in\left\{\pm1\right\}\)

Lập bảng xét các trường hợp

\(n+4\)\(1\)\(-1\)
\(n\)\(-3\)\(-5\)

Vậy \(A\inℤ\Leftrightarrow n\in\left\{-3;-5\right\}\)

19 tháng 3 2018

a, với n thuộc Z

Để A là một số nguyên thì 3n + 1 chia hết cho n+1

                               mà n + 1 chia hết n +1

=> (3n+1) - 3. (n+1) chia hết cho n+1

<=> (3n+1)-( 3n +3) chia hết cho n+1

<=> 4 chia hết cho n+1

=> n+1 thuộc Ư(4)= {+-1; +-4; +-2}

nếu ............

24 tháng 4 2022

MIK CẦN GẤP GẤP

 

Vào đay:Câu hỏi của Hồ Châu Ngân - Toán lớp 6 - Học toán với OnlineMath

26 tháng 2 2018

Nhưng nó chỉ giải câu a thôi,nhưng tui làm câu a rồi