Cho ps:
A=\(\frac{n+1}{n-3}\)(nϵZ;n#3)
a,Tìm a để có giá trị nguyên
b,Tìm a để có giá trị phân số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2\left(n+1\right)-5⋮n-1\Leftrightarrow-5⋮n-1\)
\(\Rightarrow n-1\inƯ\left(-5\right)=\left\{\pm1;\pm5\right\}\)
n - 1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -4 |
Ta có: 2n-3=2n+2-5=2(n+1)-5 vậy (2n-3)⋮(n+1)⇔5⋮ (n+1)⇔n+1 ϵ Ư(5)⇔n+1 ϵ { -5; -1; 1;5} ⇔ n ϵ {-6; -2; 0; 4}
phân số tối giản là phân số mà tử và mẫu chỉ có ước chung là ±1.
a) Gọi d là ước chung của n + 7 và n + 6. Ta chứng minh d = ±1 bằng cách xét hiệu (n + 7) - (n + 6) chia hết cho d.
b) Gọi d là ước chung của 3n + 2 và n +1. Ta chứng minh d = ±1 bằng cách xét hiệu (3n + 2) - 3.(n +1) chia hết cho d
Chúc bạn học tốt !!!
a/ Gọi d là ƯCLN của n+7; n+6
\(\to \begin{cases}n+7\vdots d\\n+6\vdots d\end{cases}\\\to n+7-(n+6)\vdots d\\\to 1\vdots d\\\to d=1\)
\(\to\) Phân số trên tối giản
b/ Gọi d là ƯCLN của 3n+2 và n+1
\(\to\begin{cases}3n+2\vdots d\\n+1\vdots d\end{cases}\\\to \begin{cases}3n+2\vdots d\\3n+3\vdots d\end{cases}\\\to 3n+3-(3n+2)\vdots d\\\to 1\vdots d\\\to d=1\)
\(\to\) Phân số trên tối giản
Ta có: ( n -1 ). ( n + 4 ) - ( n - 4 ). ( n + 1 )
= \(n^2+4n-n-4-n^2-n+4n+4\)
= 8n - 2n = 6n
Vậy đa thức trên luôn chia hết cho 6 với mọi n ϵ Z
Chúc bạn học tốt :))
\(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)=n^2+3n-4-n^2+3n+4\\ =6n\)
vì: \(6n⋮6\left(với\:n\in Z\right)\) nên \(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)⋮6\left(với\: n\in Z\right)\)
Để phân số \(\dfrac{n+5}{n+3}\) có giá trị là số nguyên thì:
\(n+5⋮n+3\)
\(\Rightarrow n+3+2⋮n+3\)
\(\Rightarrow2⋮n+3\)
Vì \(n\in N\Rightarrow n+3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Ta có bảng sau:
n+3 | 1 | -1 | 2 | -2 |
n | -2 | -4 | -1 | -5 |
Mà \(n\in N\) =>Không có giá trị của n để phân số đã cho nhận giá trị nguyên.
a) Để A có giá trị nguyên thì n + 1 chia hết cho n - 3
=> n - 3 + 4 chia hết cho n - 3
Mà n - 3 chia hết cho n - 3
=> 4 chia hết cho n - 3
=> n - 3 thuộc Ư(4)
=> n - 3 thuộc {-4; -2; -1; 1; 2; 4}
=> n thuộc {-1; 1; 2; 4; 5; 7}
b) Để A có giá trị phân số thì n - 3 khác 0
=> n khác 3