K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để phân số \(\dfrac{n+5}{n+3}\) có giá trị là số nguyên thì:

\(n+5⋮n+3\)

\(\Rightarrow n+3+2⋮n+3\)

\(\Rightarrow2⋮n+3\)

Vì \(n\in N\Rightarrow n+3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Ta có bảng sau:

n+31-12-2
n-2-4-1-5

Mà \(n\in N\) =>Không có giá trị của n để phân số đã cho nhận giá trị nguyên.

24 tháng 4 2021

\(\in\)Z cơ mà

29 tháng 12 2023

Có thiệt là lớp 6 không vậy trời 

29 tháng 12 2023

lop6 ?????????

AH
Akai Haruma
Giáo viên
4 tháng 2 2024

Lời giải:
Để $A$ nguyên thì:

$3n-5\vdots n+4$
$\Rightarrow 3(n+4)-17\vdots n+4$

$\Rightarrow 17\vdots n+4$

$\Rightarrow n+4\in \left\{\pm 1; \pm 17\right\}$

$\Rightarrow n\in \left\{-3; -5; 13; -21\right\}$

24 tháng 2 2021

mình thua

18 tháng 4 2021

bo tay

20 tháng 7 2019

a) Để \(A\inℤ\)

\(\Rightarrow3⋮n-5\)

\(\Rightarrow n-5\inƯ\left(3\right)\)

\(\Rightarrow n-5\in\left\{1;-1;3;-3\right\}\)

Lập bảng xét các trường hợp : 

\(n-1\)\(1\)\(3\)\(-1\)\(-3\)
\(n\)\(2\)\(4\)\(0\)\(-2\)

Vậy \(n\in\left\{2;4;0\right\}\)

b) Để \(\frac{n+9}{n-6}\inℕ\Leftrightarrow n+9⋮n-6\)

\(\Rightarrow n-6+15⋮n-6\)

Vì \(n-6⋮n-6\)

\(\Rightarrow15⋮n-6\)

\(\Rightarrow n-6\inƯ\left(15\right)\)

\(\Rightarrow n-6\in\left\{\pm1;\pm3;\pm5;\pm15\right\}\)

Lập bảng xét các trường hợp ta có: 

\(n-6\)\(1\)\(-1\)\(3\)\(-3\)\(5\)\(-5\)\(15\)\(-15\)
\(n\)\(7\)\(5\)\(9\)\(3\)\(11\)\(1\)\(21\)\(-9\)

Vậy \(n\in\left\{7;5;9;3;11;1;21;-9\right\}\)

4 tháng 7 2019

a) Ta có:

Để A là phân số <=> n + 4 \(\ne\)0 <=> n \(\ne\)-4

b) Với : + )n = 1 => \(A=\frac{1+5}{1+4}=\frac{6}{5}\)

+) n = -1 => \(A=\frac{-1+5}{-1+4}=\frac{4}{3}\)

c) Ta có: \(A=\frac{n+5}{n+4}=\frac{\left(n+4\right)+1}{n+4}=1+\frac{1}{n+4}\)

Để A \(\in\)Z <=> 1 \(⋮\)n + 4

      <=> n + 4 \(\in\)Ư(1) = {1; -1}

Lập bảng :

n + 41 -1
   n-3 -5

Vậy ....

4 tháng 7 2019

1a) Để A là phân số thì n \(\ne\)- 4 ; n 

b) + Khi n = 1 

=> \(A=\frac{n+5}{n+4}=\frac{1+5}{1+4}=\frac{6}{5}\)

+ Khi n = -1 

=> \(A=\frac{n+5}{n+4}=\frac{-1+5}{-1+4}=\frac{4}{3}\)

 c) Để \(A\inℤ\)

=> \(n+5⋮n+4\)

=> \(n+4+1⋮n+4\)

Ta có : Vì \(n+4⋮n+4\)

=> \(1⋮n+4\)

=> \(n+4\inƯ\left(1\right)\)

=> \(n+4\in\left\{\pm1\right\}\)

Lập bảng xét các trường hợp

\(n+4\)\(1\)\(-1\)
\(n\)\(-3\)\(-5\)

Vậy \(A\inℤ\Leftrightarrow n\in\left\{-3;-5\right\}\)

1 tháng 9 2016

a/ Gọi ƯCLN(2n+5,n+3) = d \(\left(d\ge1\right)\)

Ta có : \(\begin{cases}2n+5⋮d\\n+3⋮d\end{cases}\) \(\Rightarrow\begin{cases}2n+5⋮d\\2n+6⋮d\end{cases}\)

\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\Rightarrow1⋮d\Rightarrow d\le1\)

mà \(d\ge1\Rightarrow d=1\)

Từ đó có đpcm

 

1 tháng 9 2016

Ta có \(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=2-\frac{1}{n+3}\)

Để B là số nguyên thì \(n+3\inƯ\left(1\right)\)

Xét các trường hợp sẽ ra

20 tháng 4 2021

\(A=\frac{2n+5}{n+3}=\frac{2n+6-1}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=2-\frac{1}{n+3}\)

Để A nguyên thì 1/n+3 nguyên

hay n + 3 thuộc Ư(1) = { 1 ; -1 ]

=> n thuộc { -2 ; -4 } thì A nguyên

11 tháng 5 2018

\(Để\frac{n+5}{n+3}\)là số nguyên thì \(n+5phải\)chia hết cho n+3

\(\frac{n+5}{n+3}=\frac{n+3+2}{n+3}=\frac{n+3}{n+3}+\frac{2}{n+3}\)

Để \(\frac{n+5}{n+3}\)là phân số thì 2 phải chia hết cho n + 3 hay n+3 là ước của 2

Ư(2)= { 1,-1, 2, -2}

\(n+3=1=>n=1-3=-2\\ n+3=-1=>n=-1-3=-4\)

\(n+3=2=>n=2-3=-1\\ n+3=-2=>n=-2-3=-5\)

Vậy n phải bằng : -2 ; -4; hoặc -1 hay -5 để phân số trên là 1 số nguyên

22 tháng 3 2020

a) Để A là phân số thì \(n-2\ne0\)nên n là số nguyên bất kì khác -2.

b) Để A có giá trị nguyên thì 5\(⋮\)n-2

\(\Rightarrow n-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\Rightarrow n\in\left\{1;3;-3;7\right\}\)

b) n=0, ta được \(\frac{5}{n-2}=\frac{5}{0-2}=\frac{5}{-2}\)

n=3, ta được \(\frac{5}{n-2}=\frac{5}{3-2}=\frac{5}{1}\)