K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2016

Xét các vec tơ đơn vị \(\frac{\overrightarrow{AB}}{AB};\frac{\overrightarrow{BC}}{BC};\frac{\overrightarrow{CA}}{CA}\) trên các cạnh AB, BC, CA của tam giác ABC

Có \(0\le\left(\frac{\overrightarrow{AB}}{AB};\frac{\overrightarrow{BC}}{BC};\frac{\overrightarrow{CA}}{CA}\right)^2=3-2\left(\cos A+\cos B+\cos C\right)\)

Suy ra \(\cos A+\cos B+\cos C\le\frac{3}{2}\) => Điều cần chứng minh

7 tháng 7 2018

\(cosA+cosB+cosC\le\dfrac{3}{2}\\ \Leftrightarrow2cos\dfrac{A+B}{2}.cos\dfrac{A-B}{2}+1-2sin^2\dfrac{C}{2}\le\dfrac{3}{2}\\ \Leftrightarrow Sin^2\dfrac{C}{2}-sin\dfrac{C}{2}.cos\dfrac{A-B}{2}+\dfrac{1}{4}\ge0\\ \Leftrightarrow\left(sin\dfrac{C}{2}-\dfrac{1}{2}cos\dfrac{A-B}{2}\right)^2-\dfrac{1}{4}cos^2\dfrac{A-B}{2}+\dfrac{1}{4}\ge0\\ \Leftrightarrow\left(sin\dfrac{C}{2}-\dfrac{1}{2}cos\dfrac{A-B}{2}\right)^2+\dfrac{1}{4}\left(1-cos^2\dfrac{A-B}{2}\right)\Leftrightarrow\left(sin\dfrac{C}{2}-\dfrac{1}{2}cos\dfrac{A-B}{2}\right)^2+\dfrac{1}{4}sin^2\dfrac{A-B}{2}\ge0\)=> Luôn đúng

=>đpcm

20 tháng 4 2017

Tự chứng minh từng cái này rồi suy ra cái đó nhé b.

Ta có: \(sin\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}-sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}=sin^2\frac{A}{2}\)

Tương tự ta suy ra: 

\(sin\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}+cos\frac{A}{2}sin\frac{B}{2}cos\frac{C}{2}+cos\frac{A}{2}cos\frac{B}{2}sin\frac{C}{2}=sin^2\frac{A}{2}+sin^2\frac{B}{2}+sin^2\frac{C}{2}+3sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}\left(1\right)\)

Tiếp theo chứng minh:

\(2sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}=\frac{cosA+cosB+cosC-1}{2}\left(2\right)\)

\(sin^2\frac{A}{2}+sin^2\frac{B}{2}+sin^2\frac{C}{2}=\frac{3}{2}-\frac{cosA+cosB+cosC}{2}\left(3\right)\)

\(tan\frac{A}{2}tan\frac{B}{2}+tan\frac{B}{2}tan\frac{C}{2}+tan\frac{C}{2}tan\frac{A}{2}=1\left(4\right)\)

Từ (1), (2), (3), (4) suy được điều phải chứng minh

18 tháng 4 2017

ko hiểu ( vì em mới học lớp 6)

24 tháng 9 2023

Tham khảo:

a) Ta có: \(\widehat {AMB} + \widehat {AMC} = {180^o}\)

\( \Rightarrow \cos \widehat {AMB} =  - \cos \widehat {AMC}\)

Hay \(\cos \widehat {AMB} + \cos \widehat {AMC} = 0\)

b) Áp dụng định lí cos trong tam giác AMB ta có:

 \(\begin{array}{l}A{B^2} = M{A^2} + M{B^2} - 2MA.MB\;\cos \widehat {AMB}\\ \Leftrightarrow M{A^2} + M{B^2} - A{B^2} = 2MA.MB\;\cos \widehat {AMB}\;\;(1)\end{array}\)

Tương tự, Áp dụng định lí cos trong tam giác AMB ta được:

\(\begin{array}{l}A{C^2} = M{A^2} + M{C^2} - 2MA.MC\;\cos \widehat {AMC}\\ \Leftrightarrow M{A^2} + M{C^2} - A{C^2} = 2MA.MC\;\cos \widehat {AMC}\;\;(2)\end{array}\)

c) Từ (1), suy ra \(M{A^2} = A{B^2} - M{B^2} + 2MA.MB\;\cos \widehat {AMB}\;\)

Từ (2), suy ra \(M{A^2} = A{C^2} - M{C^2} + 2MA.MC\;\cos \widehat {AMC}\;\)

Cộng vế với vế ta được:

\(2M{A^2} = \left( {A{B^2} - M{B^2} + 2MA.MB\;\cos \widehat {AMB}} \right)\; + \left( {A{C^2} - M{C^2} + 2MA.MC\;\cos \widehat {AMC}} \right)\;\)

\( \Leftrightarrow 2M{A^2} = A{B^2} + A{C^2} - M{B^2} - M{C^2} + 2MA.MB\;\cos \widehat {AMB} + 2MA.MC\;\cos \widehat {AMC}\)

Mà: \(MB = MC = \frac{{BC}}{2}\) (do AM là trung tuyến)

\( \Rightarrow 2M{A^2} = A{B^2} + A{C^2} - {\left( {\frac{{BC}}{2}} \right)^2} - {\left( {\frac{{BC}}{2}} \right)^2} + 2MA.MB\;\cos \widehat {AMB} + 2MA.MB\;\cos \widehat {AMC}\)

\( \Leftrightarrow 2M{A^2} = A{B^2} + A{C^2} - 2.{\left( {\frac{{BC}}{2}} \right)^2} + 2MA.MB\;\left( {\cos \widehat {AMB} + \;\cos \widehat {AMC}} \right)\)

\( \Leftrightarrow 2M{A^2} = A{B^2} + A{C^2} - {\frac{{BC}}{2}^2}\)

\(\begin{array}{l} \Leftrightarrow M{A^2} = \frac{{A{B^2} + A{C^2} - {{\frac{{BC}}{2}}^2}}}{2}\\ \Leftrightarrow M{A^2} = \frac{{2\left( {A{B^2} + A{C^2}} \right) - B{C^2}}}{4}\end{array}\) (đpcm)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Cách 2:

Theo ý a, ta có: \(\cos \widehat {AMC} =  - \cos \widehat {AMB}\)

Từ đẳng thức (1): suy ra \(\cos \widehat {AMB} = \frac{{M{A^2} + M{B^2} - A{B^2}}}{{2.MA.MB}}\)

 \( \Rightarrow \cos \widehat {AMC} =  - \cos \widehat {AMB} =  - \frac{{M{A^2} + M{B^2} - A{B^2}}}{{2.MA.MB}}\)

Thế \(\cos \widehat {AMC}\)vào biểu thức (2), ta được:

\(M{A^2} + M{C^2} - A{C^2} = 2MA.MC.\left( { - \frac{{M{A^2} + M{B^2} - A{B^2}}}{{2.MA.MB}}} \right)\)

Lại có: \(MB = MC = \frac{{BC}}{2}\) (do AM là trung tuyến)

\(\begin{array}{l} \Rightarrow M{A^2} + {\left( {\frac{{BC}}{2}} \right)^2} - A{C^2} = 2MA.MB.\left( { - \frac{{M{A^2} + M{B^2} - A{B^2}}}{{2.MA.MB}}} \right)\\ \Leftrightarrow M{A^2} + {\left( {\frac{{BC}}{2}} \right)^2} - A{C^2} =  - \left( {M{A^2} + M{B^2} - A{B^2}} \right)\\ \Leftrightarrow M{A^2} + {\left( {\frac{{BC}}{2}} \right)^2} - A{C^2} + M{A^2} + {\left( {\frac{{BC}}{2}} \right)^2} - A{B^2} = 0\\ \Leftrightarrow 2M{A^2} - A{B^2} - A{C^2} + {\frac{{BC}}{2}^2} = 0\\ \Leftrightarrow 2M{A^2} = A{B^2} + A{C^2} - {\frac{{BC}}{2}^2}\\ \Leftrightarrow M{A^2} = \frac{{A{B^2} + A{C^2} - {{\frac{{BC}}{2}}^2}}}{2}\\ \Leftrightarrow M{A^2} = \frac{{2\left( {A{B^2} + A{C^2}} \right) - B{C^2}}}{4}\end{array}\)