Cho đa thức \(C=2x^2-8xy+6y^2-2x+18y+7\). Tính giá trị của đa thức C khi x - y = 5 . (toán 7 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=3x^6y+\frac{1}{2}x^4y^3-4y^7-4x^4y^3+11-5x^6y+2y^7-2\)
\(M=\left(3x^6y-5x^6y\right)+\left(\frac{1}{2}x^4y^3-4x^4y^3\right)+\left(-4y^7+2y^7\right)+\left(11-2\right)\)
\(M=-2x^6y-\frac{7}{2}x^4y^3-2y^7+9\)
Xét bậc của từng hạng tử
-2x6y có bậc là 7
-7/2x4y3 có bậc là 7
-2y7 có bậc là 7
=> Bậc của M = 7
Thay x = 1 , y = -1 vào M ta được :
\(M=-2\cdot1^6\cdot\left(-1\right)-\frac{7}{2}\cdot1^4\cdot\left(-1\right)^3-2\cdot\left(-1\right)^7+9\)
\(M=-2\cdot1\cdot\left(-1\right)-\frac{7}{2}\cdot1\cdot\left(-1\right)-2\cdot\left(-1\right)+9\)
\(M=2+\frac{7}{2}+2+9\)
\(M=\frac{33}{2}\)
Vậy giá trị của M = 33/2 khi x = 1 , y = -1
a) Đặt \(A=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy \(Min_A=4\Leftrightarrow x=1\)
b) Đặt \(B=x^2+y^2+2x+6y+12=\left(x+2x+1\right)+\left(y^2+6y+9\right)+2\)
\(=\left(x+1\right)^2+\left(y+3\right)^2+2\ge2\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x+1=0\\y+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-3\end{cases}}}\)
Vậy \(Min_B=2\Leftrightarrow\hept{\begin{cases}x=-1\\y=-3\end{cases}}\)
c) Đặt \(C=5x-x^2=-\left(x^2-5x+6,25\right)+6,25=-\left(x-2,5\right)^2+6,25\le6,25\)
Dấu "=" xảy ra : \(\Leftrightarrow x-2,5=0\Leftrightarrow x=2,5\)
Vậy \(Max_C=6,25\Leftrightarrow x=2,5\)
d) Sửa đề:
Đặt \(D=-x^2-4x-7=-\left(x^2+4x+4\right)-3=-\left(x+2\right)^2-3\le-3\)
Dấu "=" xảy ra \(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy \(Max_D=-3\Leftrightarrow x=-2\)
a)x2-2x+5
=x2-2x+1+4
=(x+1)2+4
Vì (x+1)2\(\ge\)0 nên (x+1)2\(\ge\)4
Dấu "=" xảy ra khi x+1=0\(\Leftrightarrow\)x=-1
Vậy GTNN của BT là 4 khi x=1
b)(x2+2x+1)+(y2+6y+9)+2
=(x+1)2+(y+3)2+2
Vì (x+1)2+(y+3)2\(\ge\)0 nên (x+1)2+(y+3)2+2\(\ge\)2
Dấu "=" xảy ra khi x+1=0và y+3=0 <=> x=-1 và x=-3
Vậy GTNN của BT là 2 khi x=1 và x=3
c)5x – x^2
= -(x^2 - 5x + 25/4 ) + 25/4
= -(x-5/2)^2 + 25/4 ≤ 25/4 ∀x
vậy GTLN = 25/4 khi x - 5/2 = 0 => x = 5/2
d)=-(x2+4x+7)
=-(x2+4x+4+3)
=-(x2+4x+4)-3
=-(x+2)2-3
Vì (x+2)2\(\ge\)0 nên -(x+2)2\(\le\)0 =>-(x+2)2-3\(\le\)-3
Dấu "=" xảy ra khi x+2=0<=>x=-2
Vậy GTLN của BT là -3 KHI X=-2
\(a,Q=\left(-2x^3y+7x^2y+3xy\right)+P=\left(-2x^3y+7x^2y+3xy\right)+\left(3x^2y-2xy^2-4xy+2\right)\\ =-2x^3y+7x^2y+3xy+3x^2y-3xy^2-4xy+2\\ =-2x^3y^2+10x^2y-3xy^2-xy+2\)
\(b,M=\left(3x^2y^2-5x^2y+8xy\right)-P\\ =\left(3x^2y^2-5x^2y+8xy\right)-\left(3x^2y-2xy^2-4xy+2\right)\\ =3x^2y^2-5x^2y+8xy-3x^2y^2+2xy^2+4xy-2\\ =-3x^2y+12xy-2\)
e:
Xét ΔABH và ΔACH có
AB=AC
góc BAH=góc CAH
AH chung
=>ΔABH=ΔACH
Xét ΔABC có
AH,BM là trung tuyến
AH cắt BM tại G
=>G là trọng tâm
BH=CH=9cm
=>AH=căn 15^2-9^2=12cm
Xét ΔABC có
H là trung điểm của BC
HK//AC
=>K là trug điểm của AB
=>C,G,K thẳng hàng
d: Xét ΔOAM vuông tại A và ΔOBM vuông tại B có
OM chung
góc AOM=góc BOM
=>ΔOAM=ΔOBM
=>MA=MB
Xét ΔMAH vuông tại A và ΔMBK vuông tại B có
MA=MB
góc AMH=góc BMK
=>ΔMAH=ΔMBK
OA+AH=OH
OB+BK=OK
mà OA=OB và AH=BK
nên OH=OK
=>ΔOHK cân tại O
mà OI là phân giác
nên OI vuông góc HK
b: A(x)=0
=>x-7=0
=>x=7
\(a,A+B=x^2-3xy-y^2+1+2x^2+y^2-7xy-5\)
\(=x^2+2x^2+\left(-3xy-7xy\right)-y^2+y^2+1-5\)
\(=3x^2-10xy-4\)
\(b,C+A-B=0\Rightarrow C=B-A\)
\(=\left(2x^2+y^2-7xy-5\right)-\left(x^2-3xy-y^2+1\right)\)
\(=2x^2+y^2-7xy-5-x^2+3xy+y^2-1\)
\(=x^2+2y^2-4xy-6\)
\(c,x=2;y=-\dfrac{1}{2}\Rightarrow C=2^2+2\left(-\dfrac{1}{2}\right)^2-4.2.\left(-\dfrac{1}{2}\right)-6\)
\(\Rightarrow C=\dfrac{5}{2}\)
a) tự tính nhé dễ mà
b) M + N = 5xyz - 5x2 + 8xy + 5 + 3x2 + 2xyz - 8xy - 7 + y2
= 5xyz + 2xyz + (-5x2 + 3x2) + 8xy - 8xy + y2 + 5 - 7
= 7xyz - 2x2 + y2 - 2
M - N và N - M làm tương tự nhé
toán lớp mấy vậy
lớp 7 đó bạn