K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2016

\(\frac{x}{2x-1}>\frac{x-1}{x+2}\Rightarrow\frac{x}{2x-1}-\frac{x-1}{x+2}>0\Rightarrow\frac{-x^2+5x-1}{\left(2x-1\right)\left(x+2\right)}>0\)

x  \(-\infty\)         -2              \(\frac{5-\sqrt{21}}{2}\)                \(\frac{1}{2}\)                  \(\frac{5+\sqrt{21}}{2}\)              \(+\infty\)                      
-x2 + 5x - 1           -              -            0           +                 +            0              - 
2x - 1          -               -                          -        0        +                           +
x + 2           -        0      +                      +                   +                            +

=> VT :                -        //      +         0           -          //        +            0              -

Vậy \(S=\left(-2;\frac{5-\sqrt{21}}{2}\right)\cup\left(\frac{1}{2};\frac{5+\sqrt{21}}{2}\right)\)

25 tháng 2 2016

\(\frac{x}{2x-1}>\frac{x-1}{x+2}\)   (1)

\(\Leftrightarrow\)  \(\frac{\left(2x-1\right)\left(x-1\right)-x\left(x+2\right)}{\left(2x-1\right)\left(x+2\right)}<0\)

\(\Leftrightarrow\)  \(\frac{x^2-5x+1}{2x^2+3x-2}<0\)  (a)

Xét các trường hợp

- Nếu \(2x^2+3x-2<0\)  hay là \(x\in\left(-2;\frac{1}{2}\right)\)  := (*) thì (a) \(\Leftrightarrow\) \(x^2-5x+1>0\)

\(\Leftrightarrow\)\(x<\frac{5-\sqrt{21}}{2}\)  hoặc \(\frac{5-\sqrt{21}}{2}\)< x

Kết hợp với điều kiện \(x\in\) (*) ta được -2<x<\(\frac{5-\sqrt{21}}{2}\)

- Nếu \(2x^2+3x-2>0\) hay \(x\in\left(-\infty;-2\right)\cup\left(\frac{1}{2};+\infty\right)\) : = (* *) 

thì (1) \(\Leftrightarrow\) \(x^2-5x+1<0\) \(\Leftrightarrow\) \(\frac{5-\sqrt{21}}{2}\)<x<\(\frac{5+\sqrt{21}}{2}\)

Kết hợp với điều kiện x\(\in\)(* * ) ta được \(\frac{1}{2}\)<x<\(\frac{5+\sqrt{21}}{2}\)

Tóm lại : 

(1) có nghiệm -2<x<\(\frac{5-\sqrt{21}}{2}\) hoặc  \(\frac{1}{2}\)<x<\(\frac{5+\sqrt{21}}{2}\)

 

7 tháng 8 2020

Bài làm:

PT:

đkxđ: \(x\ne0;x\ne2\)

Ta có: \(\frac{x+2}{x-2}=\frac{2}{x^2-2x}+\frac{1}{x}\)

\(\Leftrightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}+\frac{x-2}{x\left(x-2\right)}\)

\(\Rightarrow x^2+2x=2+x-2\)

\(\Leftrightarrow x^2+x=0\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(vl\right)\\x+1=0\end{cases}}\Rightarrow x=-1\)

BPT:

Ta có: \(\frac{x+1}{2}-x\le\frac{1}{2}\)

\(\Leftrightarrow\frac{x+1}{2}-x-\frac{1}{2}\le0\)

\(\Leftrightarrow\frac{x+1-2x-1}{2}\le0\)

\(\Leftrightarrow\frac{-x}{2}\le0\)

\(\Rightarrow-x\le0\)

\(\Rightarrow x\ge0\)

7 tháng 8 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)

\(\frac{x+2}{x-2}=\frac{2}{x^2-2x}+\frac{1}{x}\)

\(\Leftrightarrow\frac{2}{x\left(x-2\right)}+\frac{1}{x}-\frac{x+2}{x-2}=0\)

\(\Leftrightarrow\frac{2+x-2-x^2-2x}{x\left(x-2\right)}=0\)

\(\Leftrightarrow-x^2-x=0\)

\(\Leftrightarrow-x\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=-1\left(tm\right)\end{cases}}}\)

Vậy \(S=\left\{-1\right\}\)

b) \(\frac{x+1}{2}-x\le\frac{1}{2}\)

\(\Leftrightarrow x+1-2x-1\le0\)

\(\Leftrightarrow-x\le0\)

\(\Leftrightarrow x\ge0\)

Vậy \(x\ge0\)

29 tháng 12 2015
  
  
  

 

30 tháng 12 2015

1488

20 tháng 9 2020

1) \(\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{4x+15}{9-x^2}\)

ĐKXĐ : \(x\ne\pm3\)

\(\Leftrightarrow\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{-4x-15}{x^2-9}\)

\(\Leftrightarrow\frac{\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow\frac{x^2-4x+3}{\left(x-3\right)\left(x+3\right)}-\frac{x^2+3x}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow\frac{x^2-4x+3-x^2-3x}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow-7x+3=-4x-15\)

\(\Leftrightarrow-7x+4x=-15-3\)

\(\Leftrightarrow-3x=-18\)

\(\Leftrightarrow x=6\)( tmđk )

Vậy x = 6 là nghiệm của phương trình

2) 2x + 3 < 6 - ( 3 - 4x )

<=> 2x + 3 < 6 - 3 + 4x

<=> 2x - 4x < 6 - 3 - 3

<=> -2x < 0

<=> x > 0

Vậy nghiệm của bất phương trình là x > 0

22 tháng 4 2018

a, pt <=> x^2-x+5/x^2+x+3 - 1 < 0

<=> x^2-x+5-x^2-x-3/x^2+x+3 > 0

<=> 2-2x/x^2+x+3 > 0

<=> 2-2x > 0 ( vì x^2+x+3 > 0 )

<=> 2 > 2x

<=> x < 1

Vậy x < 1

Tk mk nha

22 tháng 4 2018

B, =2x2-2x-14\(\le\)x2+1

    =(2x2-x2)-2x-15\(\le\)0

    =x2-2x-15\(\le\)0

    =x2+3x-5x-15\(\le\)0

    =x(x+3)-5(x+3)<=0

    =(x+3)(x-5)<=0

    Bạn giải ra ta được x=-3

                                      x=5

28 tháng 4 2020

ĐK: \(\hept{\begin{cases}1-\frac{2}{x}\ge0\\2x-\frac{8}{x}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x-2}{x}\ge0\\\frac{2x^2-8}{x}\ge0\end{cases}}\)

<=> \(-2\le x< 0\) hoặc  \(x\ge2\)

TH1:  \(-2\le x< 0\)

Bất phương trình đúng

TH2: \(x\ge2\)(@@)

bất pt <=> \(2\sqrt{\frac{x-2}{x}}+\sqrt{\frac{2\left(x-2\right)\left(x+2\right)}{x}}\ge x\)

<=> \(\sqrt{\frac{x-2}{x}}\left(2+\sqrt{2\left(x+2\right)}\right)\ge x\)

<=> \(\sqrt{\frac{x-2}{x}}\left(\frac{2x}{\sqrt{2\left(x+2\right)}-2}\right)\ge x\)

<=> \(2\sqrt{\frac{x-2}{x}}+2\ge\sqrt{2\left(x+2\right)}\)

<=> \(4\left(1-\frac{2}{x}\right)+4+8\sqrt{1-\frac{2}{x}}\ge2x+4\)

<=> \(4\sqrt{1-\frac{2}{x}}\ge x-2+\frac{4}{x}\)

<=> \(16\left(1-\frac{2}{x}\right)\ge x^2+4+\frac{16}{x^2}-4x+8-\frac{16}{x}\)

<=> \(4\ge x^2+\frac{16}{x^2}-4x+\frac{16}{x}\)

<=> \(\left(x-\frac{4}{x}\right)^2-4\left(x-\frac{4}{x}\right)+4\le0\)

<=> \(\left(x-\frac{4}{x}+2\right)^2\le0\) vô nghiệm vì x > 2 => \(x-\frac{4}{x}+2>2\)

Vậy -2 \(\le\) x < 0