K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b) Phương trình hoành độ giao điểm là:

\(2x+6=-x+3\)

\(\Leftrightarrow2x+x=3-6\)

\(\Leftrightarrow3x=-3\)

hay x=-1

Thay x=-1 vào (d), ta được:

\(y=2\cdot\left(-1\right)+6=-2+6=4\)

Vậy: A(-1;4)

a: loading...

b: Để (d)//(d') thì \(\left\{{}\begin{matrix}m+1=2\\6< >-2\left(đúng\right)\end{matrix}\right.\)

=>m+1=2

=>m=1

c:

(d'): y=(m+1)x+6

=>(m+1)x-y+6=0

Khoảng cách từ O đến (d') là:

\(d\left(O;\left(d'\right)\right)=\dfrac{\left|0\cdot\left(m+1\right)+0\cdot\left(-1\right)+6\right|}{\sqrt{\left(m+1\right)^2+\left(-1\right)^2}}\)

\(=\dfrac{6}{\sqrt{\left(m+1\right)^2+1}}\)

Để \(d\left(O;\left(d'\right)\right)=3\sqrt{2}\) thì \(\dfrac{6}{\sqrt{\left(m+1\right)^2+1}}=3\sqrt{2}\)

=>\(\sqrt{\left(m+1\right)^2+1}=\sqrt{2}\)

=>\(\left(m+1\right)^2+1=2\)

=>\(\left(m+1\right)^2=1\)

=>\(\left[{}\begin{matrix}m+1=1\\m+1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-2\end{matrix}\right.\)

Chọn A

20 tháng 4 2022

...

NV
23 tháng 4 2022

\(y'=7\left(-x^2+3x+7\right)^6.\left(-x^2+3x+7\right)'\)

\(=7\left(-2x+3\right)\left(-x^2+3x+7\right)^6\)

Các hàm số a,b,e là các hàm số bậc nhất

2 tháng 1 2022

Giải thích chưa

25 tháng 10 2021

a: TXĐ: \(D=R\backslash\left\{-\dfrac{1}{2}\right\}\)

b: TXĐ: \(D=R\backslash\left\{-3;1\right\}\)

c: TXĐ: \(D=\left[-\dfrac{1}{2};3\right]\)

23 tháng 11 2021

\(c,y=2x+2-2x=2\\ d,y=3x-3-x=2x-3\\ f,y=x+\dfrac{1}{x}=\dfrac{x^2+1}{x}\)

Hs bậc nhất là a,b,d,e

\(a,-2< 0\Rightarrow\text{nghịch biến}\\ b,\sqrt{2}>0\Rightarrow\text{đồng biến}\\ d,2>0\Rightarrow\text{đồng biến}\\ e,-\dfrac{2}{3}< 0\Rightarrow\text{nghịch biến}\)

12 tháng 3 2019

a)

Giải bài tập Toán 9 | Giải Toán lớp 9

b)Bảng giá trị

x 0 1
y = 2x 0 2

Đồ thị hàm số y = 2x đi qua 2 điểm (0; 0) và (1; 2)

Giải bài tập Toán 9 | Giải Toán lớp 9

22 tháng 12 2023

Bài 5:

a: Xét (O) có

ΔADB nội tiếp

AB là đường kính

Do đó: ΔADB vuông tại D

=>AD\(\perp\)DB tại D

=>AD\(\perp\)BC tại D

Xét ΔABC vuông tại A có AD là đường cao

nên \(AC^2=CD\cdot CB\)

b: Ta có: ΔOAE cân tại O

mà OC là đường cao

nên OC là phân giác của góc AOE

Xét ΔOAC và ΔOEC có

OA=OE

\(\widehat{AOC}=\widehat{EOC}\)

OC chung

Do đó: ΔOAC=ΔOEC

=>\(\widehat{OAC}=\widehat{OEC}\)

mà \(\widehat{OAC}=90^0\)

nên \(\widehat{OEC}=90^0\)

=>CE là tiếp tuyến của (O)

Bài 3:

a: loading...

b: Phương trình hoành độ giao điểm là:

\(-\dfrac{1}{2}x=2x-5\)

=>\(-\dfrac{1}{2}x-2x=-5\)

=>\(-\dfrac{5}{2}x=-5\)

=>x=2

Thay x=2 vào y=-1/2x, ta được:

\(y=-\dfrac{1}{2}\cdot2=-1\)

Vậy: (d) cắt (d') tại điểm A(2;-1)

NV
10 tháng 9 2021

a.

\(y'=-\dfrac{3}{2}x^3+\dfrac{6}{5}x^2-x+5\)

b.

\(y'=\dfrac{\left(x^2+4x+5\right)'}{2\sqrt{x^2+4x+5}}=\dfrac{2x+4}{2\sqrt{x^2+4x+5}}=\dfrac{x+2}{\sqrt{x^2+4x+5}}\)

c.

\(y=\left(3x-2\right)^{\dfrac{1}{3}}\Rightarrow y'=\dfrac{1}{3}\left(3x-2\right)^{-\dfrac{2}{3}}=\dfrac{1}{3\sqrt[3]{\left(3x-2\right)^2}}\)

d.

\(y'=2\sqrt{x+2}+\dfrac{2x-1}{2\sqrt{x+2}}=\dfrac{6x+7}{2\sqrt{x+2}}\)

e.

\(y'=3sin^2\left(\dfrac{\pi}{3}-5x\right).\left[sin\left(\dfrac{\pi}{3}-5x\right)\right]'=-15sin^2\left(\dfrac{\pi}{3}-5x\right).cos\left(\dfrac{\pi}{3}-5x\right)\)

g.

\(y'=4cot^3\left(\dfrac{\pi}{6}-3x\right)\left[cot\left(\dfrac{\pi}{3}-3x\right)\right]'=12cot^3\left(\dfrac{\pi}{6}-3x\right).\dfrac{1}{sin^2\left(\dfrac{\pi}{3}-3x\right)}\)