tìm giá trị nhỏ nhất và lớn nhất của các biểu thức sau
1, 9x mũ 2 + 6x -1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có: \(A=x^2+10x+25,01=\left(x+5\right)^2+0,01\ge0,01\)
Dấu "=" xảy ra khi x = -5
2) Ta có: \(B=3x^2-6x+4=3\left(x-1\right)^2+1\ge1\)
Dấu "=" xảy ra khi x = 1
\(A=x^2-4x+10=x^2-4x+4+6=\left(x-2\right)^2+6\ge6\)
Vậy GTNN A là 6 khi x - 2 = 0 <=> x = 2
\(B=\left(1-x\right)\left(3x-4\right)=3x-4-3x^2+4x=-3x^2+7x-4\)
\(=-3\left(x^2-\frac{7}{3}x+\frac{4}{3}\right)=-3\left(x^2-2.\frac{7}{6}x+\frac{49}{36}-\frac{1}{36}\right)=-3\left(x-\frac{7}{6}\right)^2+\frac{1}{12}\ge\frac{1}{12}\)
\(=3\left(x-\frac{7}{6}\right)^2-\frac{1}{12}\le-\frac{1}{12}\)Vậy GTLN B là -1/12 khi x = 7/6
\(C=3x^2-9x+5=3\left(x^2-3x+\frac{5}{3}\right)=3\left(x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{7}{12}\right)\)
\(=3\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\ge-\frac{7}{4}\)Vậy GTNN C là -7/4 khi x = 3/2
\(D=-2x^2+5x+2=-2\left(x^2-\frac{5}{2}x-1\right)=-2\left(x^2-2.\frac{5}{4}x+\frac{25}{16}-\frac{41}{16}\right)\)
\(=-2\left(x-\frac{5}{4}\right)^2+\frac{21}{8}\le\frac{21}{8}\)Vậy GTLN D là 21/8 khi x = 5/4
Ta có: \(N=-9x^2+6x+5\)
\(=-\left(9x^2-6x-5\right)\)
\(=-\left(9x^2-6x+1-6\right)\)
\(=-\left(3x-1\right)^2+6\le6\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{3}\)
mọi người ơi giúp mình trả lồi câu hỏi này vớiiiiiiiiiiii
\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)
\(A=\sqrt{1^2-2\cdot3x\cdot1+\left(3x\right)^2}+\sqrt{\left(3x\right)^2-2\cdot2\cdot3x+2^2}\)
\(A=\sqrt{\left(1-3x\right)^2}+\sqrt{\left(3x-2\right)^2}\)
\(A=\left|1-3x\right|+\left|3x-2\right|\)
\(A=\left|1-3x+3x-2\right|\)
\(A=\left|-1\right|=1\)
Dấu "=" xảy ra \(\left(1-3x\right)\left(3x-2\right)\ge0\)
\(\Rightarrow\dfrac{1}{3}\le x\le\dfrac{2}{3}\)
Vậy: \(A_{min}=1\) khi \(\dfrac{1}{3}\le x\le\dfrac{2}{3}\)
a, Vì \(\left(x-2\right)^2\ge0\) nên \(A=\left(x-2\right)^2+24\ge24\)
Dấu '=' xảy ra khi và chỉ khi: \(\left(x-2\right)^2=0\Leftrightarrow x=2\)
Vậy GTNN của A là 24 khi x=2.
b,Vì \(-x^2\le0\) nên \(B=-x^2+\dfrac{13}{5}\le\dfrac{13}{5}\)
Dấu '=' xảy ra khi và chỉ khi: \(-x^2=0\Leftrightarrow x=0\)
Vậy GTLN của B là \(\dfrac{13}{5}\) khi x=0
+) Giá trị nhỏ nhất
Ta có: \(A=\dfrac{6x+8}{x^2+1}=\dfrac{-\left(x^2+1\right)+x^2+6x+9}{x^2+1}\) \(=-1+\dfrac{\left(x+3\right)^2}{x^2+1}\ge-1\)
Dấu bằng xảy ra \(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
+) Giá trị lớn nhất
Ta có: \(A=\dfrac{6x+8}{x^2+1}=\dfrac{9\left(x^2+1\right)-9x^2+6x-1}{x^2+1}\) \(=9-\dfrac{\left(3x-1\right)^2}{x^2+1}\ge9\)
Dấu bằng xảy ra \(\Leftrightarrow3x-1=0\Leftrightarrow x=\dfrac{1}{3}\)
Vậy \(P_{Min}=-1\) khi \(x=-3\)
\(P_{Max}=9\) \(\Leftrightarrow x=\dfrac{1}{3}\)
a) \(A=\sqrt{4x^2+4x+2}=\sqrt{4x^2+4x+1+1}=\sqrt{\left(2x+1\right)^2+1}\)
Vì \(\left(2x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(2x+1\right)^2+1\ge1\forall x\)
\(\Rightarrow A\ge\sqrt{1}=1\)
Dấu " = " xảy ra \(\Leftrightarrow2x+1=0\)\(\Leftrightarrow2x=-1\)\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy \(minA=1\Leftrightarrow x=\frac{-1}{2}\)
b) \(B=\sqrt{2x^2-4x+5+1}=\sqrt{2x^2-4x+2+3+1}=\sqrt{2\left(x^2-2x+1\right)+4}\)
\(=\sqrt{2\left(x-1\right)^2+4}\)
Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2+4\ge4\forall x\)
\(\Rightarrow B\ge\sqrt{4}=2\)
Dấu " = " xảy ra \(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)
Vậy \(minB=2\Leftrightarrow x=1\)
Đặt A 9x2 + 6x - 1 = 9x2 + 6x + 1 - 2 = (3x + 1)2 - 2 \(\ge\)-2
=> Min A = -2
Dấu "=" xảy ra <=> 3x + 1 = 0
<=> x = -1/3
Vậy Min A = -2 <=> x = -1/3
=-1/3 nha