Phân tích đa thức thành nhân tử: x^4 + 5x^3 - 7x^2 - 41x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Như thế này :
x^3 - 8x^2 + x + 42 = x^3 - 7x^2 - x^2 + 7x - 6x + 42
= ( x^3 - x^2 ) - ( 7x^2 - 7x ) - ( 6x - 42 )
= x^2.( x - 1 ) - 7x.( x - 1 ) - 6.( x - 7 )
= ( x^2 - 7x ).( x - 1 ) - 6.( x - 7 )
= x.( x- 7 ).( x - 1 ) - 6.( x - 7 ) = [ x.( x - 1 ) - 6 ].( x - 7 )
x^4 + 5x^3 - 7x^2 - 41x - 30 = x^4 + 5x^3 - 7x^2 - 35x - 6x - 30
= x.( x^3 + 6 ) + 5.( x^3 + 6 ) - 7x.( x + 5 )
= ( x + 5 ) ( x^3 + 6 ) - 7x.( x + 5 )
= ( x + 5 ).( x^3 - 7x + 5 )
CHÚC BẠN HỌC TỐT
Thời gian có hạn copy cái này hộ mình vào google xem nha :
https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi
Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....
Có 300 giải nhanh nha đã có 241 người nhận rồi
OKthanks
\(x^4+5x^3-7x^2-41x-30\)
\(=x^4+x^3+4x^3+4x^2-11x^2-11x-30x-30\)
\(=x^3\left(x+1\right)+4x^2\left(x+1\right)-11x\left(x+1\right)-3x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3+4x^2-11x-30\right)\)
\(=\left(x+1\right)\left(x^3-3x^2+7x^2-21x+10x-30\right)\)
\(=\left(x+1\right)\left[x^2\left(x-3\right)+7x\left(x-3\right)+10x\left(x-3\right)\right]\)
\(=\left(x+1\right)\left(x-3\right)\left(x^2+2x+5x+10\right)\)
\(=\left(x+1\right)\left(x-3\right)\left(x+2\right)\left(x+5\right)\)
a) \(=\left(x^2-6\right)\left(x^2-1\right)=\left(x^2-6\right)\left(x-1\right)\left(x+1\right)\)
b) \(=\left(x^2-1\right)\left(x^2+3\right)=\left(x-1\right)\left(x+1\right)\left(x^2+3\right)\)
c) \(=x^2\left(x-1\right)-x\left(x-1\right)+4\left(x-1\right)=\left(x-1\right)\left(x^2-x+4\right)\)
6x3 + 5x2 - 7x - 4
= (6x3 + 5x - 7x) - 4
= x (6x2 - 5 - 7) - 22
= x (6x2 - 12) - 22
= x [6 (x2 - 2)] - 22
= x [6 (x2 - \(\sqrt{2}^2\))] - 22
= x [6 (x +\(\sqrt{2}\)) (x -\(\sqrt{2}\))] - 22
= (x - 22) [6 (x +\(\sqrt{2}\)) (x -\(\sqrt{2}\))
b) 2x3 - x2 + x - 2
= (2x3 - x2 - x) - 2
= x (2x2 - x - 1) - 2
= (x - 2) (2x2 - x - 1)
(mik ko biet dug ko, neu sai mog bn thog cam)
a: Ta có: \(-3x^4+20x^3-35x^2-10x+48\)
\(=-\left(3x^4-20x^3+35x^2+10x-48\right)\)
\(=-\left(3x^4-9x^3-11x^3+33x^2+2x^2-6x+16x-48\right)\)
\(=-\left(x-3\right)\left(3x^3-11x^2+2x+16\right)\)
\(=-\left(x-3\right)\left(3x^3-6x^2-5x^2+10x-8x+16\right)\)
\(=-\left(x-3\right)\left(x-2\right)\left(3x^2-5x-8\right)\)
\(=-\left(x-3\right)\left(x-2\right)\left(3x-8\right)\left(x+1\right)\)
b: Ta có: \(-\left(2x^4+7x^3+x^2-7x-3\right)\)
\(=-\left(2x^4-2x^3+9x^3-9x^2+10x^2-10x+3x-3\right)\)
\(=-\left(x-1\right)\left(2x^3+9x^2+10x+3\right)\)
\(=-\left(x-1\right)\left(2x^3+2x^2+7x^2+7x+3x+3\right)\)
\(=-\left(x-1\right)\left(x+1\right)\left(2x^2+7x+3\right)\)
\(=-\left(x-1\right)\left(x+1\right)\cdot\left(x+3\right)\left(2x+1\right)\)
a, x^2 + 5x +4
= x^2 + 1x + 4x + 4
= (x^2 + 1x) + (4x + 4)
= x ( x + 1 ) + 4 ( x + 1 )
= (x + 1) (x + 4)
b, x^2 - 6x + 5
= x^2 - 1x - 5x + 5
= (x^2 - 1x) - (5x - 5)
= x (x - 1) - 5 (x - 1)
= (x - 1) (x - 5)
c, x^2 + 7x + 12
= x^2 + 3x + 4x + 12
= (x^2 + 3x) + (4x + 12)
= x (x + 3) + 4 (x + 3)
= (x + 3) (x + 4)
d, 2x^2 - 5x + 3
= 2^x2 - 2x - 3x + 3
= 2x (x - 1) - 3 (x - 1)
= (x-1) (2x - 3)
e, 7x - 3x^2 - 4
= 3x + 4x - 3x^2 - 4
= (3x - 3x^2) + (4x - 4)
= 3x (1 - x) + 4 (x - 1)
= 3x (1-x) - 4 (1 - x)
= (1 - x) (3x - 4)
f, x^2 - 10x + 16
= x^2 - 2x - 8x + 16
= (x^2 - 2x) - (8x - 16)
= x (x - 2) - 8 (x - 2)
= (x - 2) (x - 8)
a, (x+1)(x+4)
b,(x-5)(x-1)
c,(x+3)(x+4)
d,(2x-3)(x-1)
e,(-3x+4)(x-1)
f, (x-8)(x-2)
=> x (x3 + 5x2 - 7x - 41)