trong mặt phẳng Oxy cho A(2 ,5) , B(1 ,2) ,C(4 , 1) . Tìm tọa độ M sao cho vector MB + 3 vector MC = 2 vector AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overrightarrow{MB}=\left(1-x_M;2-y_M\right)\)
\(\overrightarrow{MC}=\left(4-x_M;1-y_M\right)\)
\(\overrightarrow{AB}=\left(-1;-3\right)\)
Theo đề, ta có:
\(\left\{{}\begin{matrix}1-x_M+3\left(4-x_M\right)=-2\\2-y_M+3\left(1-y_M\right)=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1-x_M+12-3x_M=-2\\2-y_M+3-3y_M=-6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-4x_M=-15\\-4y_M=-11\end{matrix}\right.\Leftrightarrow M\left(\dfrac{15}{4};\dfrac{11}{4}\right)\)
a.
\(\left|\overrightarrow{BD}-\overrightarrow{BC}\right|=\left|\overrightarrow{BD}+\overrightarrow{CB}\right|=\left|\overrightarrow{CD}\right|=CD=a\)
b.
Do O là tâm hình vuông \(\Rightarrow\) O đồng thời là trung điểm AC và BD
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{0}\\\overrightarrow{OB}+\overrightarrow{OD}=\overrightarrow{0}\end{matrix}\right.\)
Do đó:
\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}=\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{MO}+\overrightarrow{OB}+\overrightarrow{MO}+\overrightarrow{OC}+\overrightarrow{MO}+\overrightarrow{OD}\)
\(=4\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{OC}+\overrightarrow{OB}+\overrightarrow{OD}=4\overrightarrow{MO}+\overrightarrow{0}+\overrightarrow{0}=4\overrightarrow{MO}\)
c. Đề bài câu này thật kì quặc, đề cho cạnh hình vuông bằng a nhưng lại yêu cầu tìm quỹ tích có tổng độ dài bằng 1 đơn vị.
Gọi G là trọng tâm tam giác ABC \(\Rightarrow\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)
\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=1\Leftrightarrow\left|\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right|=1\)
\(\Leftrightarrow\left|3\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right|=1\)
\(\Leftrightarrow\left|3\overrightarrow{MG}\right|=1\)
\(\Leftrightarrow3MG=1\)
\(\Leftrightarrow MG=\dfrac{1}{3}\)
Tập hợp M là đường tròn tâm G bán kính \(\dfrac{1}{3}\)
a:
b: \(\overrightarrow{MN}=\overrightarrow{MA}+\overrightarrow{AN}\)
\(=\overrightarrow{CB}+\dfrac{1}{2}\cdot\overrightarrow{AK}\)
\(=\overrightarrow{CA}+\overrightarrow{AB}+\dfrac{1}{2}\cdot\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)
\(=-\overrightarrow{AC}+\overrightarrow{AB}+\dfrac{1}{4}\overrightarrow{AB}+\dfrac{1}{4}\overrightarrow{AC}\)
\(=\dfrac{5}{4}\cdot\overrightarrow{AB}-\dfrac{3}{4}\cdot\overrightarrow{AC}\)
Gọi M(x,y) là điểm cần tìm
\(\overrightarrow{MA}+\overrightarrow{MB}=(-1-2x;8-2y)\)
\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=(8-3x;16-3y)\)
Theo giả thiết \(3|\overrightarrow{MA}+\overrightarrow{MB}|=2|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}|\), suy ra
\(3\sqrt{(-1-2x)^2+(8-2y)^2}=2\sqrt{(8-3x)^2+(16-3y)^2}\)
\(\Leftrightarrow 9(4x^2+4y^2+4x-32y+65)=4(9x^2+9y^2-48x-96y+320)\)
\(\Leftrightarrow 228x+96y-695=0\)
Vậy tập các điểm M cần tìm là đường thẳng 228x+96y-695=0
a: \(\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}\)
=>\(\overrightarrow{BM}+\overrightarrow{MA}+\overrightarrow{MC}=\overrightarrow{0}\)
=>\(\overrightarrow{BA}+\overrightarrow{MC}=\overrightarrow{0}\)
=>\(\overrightarrow{BA}=\overrightarrow{CM}\)
=>BAMC là hình bình hành
=>M là điểm thỏa mãn BAMC là hình bình hành
Gọi K là trung điểm của BC
\(2\overrightarrow{NA}+\overrightarrow{NB}+\overrightarrow{NC}=\overrightarrow{0}\)
=>\(2\overrightarrow{NA}+2\overrightarrow{NK}=\overrightarrow{0}\)
=>\(\overrightarrow{NA}+\overrightarrow{NK}=\overrightarrow{0}\)
=>N là trung điểm của AK
chtt