K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2015

ta có \(y'=4x^3+12mx^2+6\left(m+1\right)x\)

ta giải pt \(4x^3+12mx^2+6\left(m+1\right)x=0\Leftrightarrow x\left(4x^2+12mx+6m+6\right)=0\)

suy ra \(\begin{cases}x=0\\4x^2+12mx+6m+6=0\end{cases}\)

ta tính \(y''=12x^2+24mx+6m+6\)

để hàm số có cực đâị mà ko có cực tiểu thì y''(0)<0 với mọi x

giải pt suy ra đc điều kiện của m

 

 

NV
18 tháng 6 2021

\(y'=4x^3+12mx^2+6\left(m+1\right)x=2x\left[2x^2+6mx+3\left(m+1\right)\right]\)

Hàm có cực tiểu mà ko có cực đại khi và chỉ khi \(y'=0\) có đúng 1 nghiệm đơn

TH1: \(2x^2+6mx+3\left(m+1\right)=0\) có nghiệm \(x=0\)

\(\Leftrightarrow m=-1\)

TH2: \(2x^2+6mx+3\left(m+1\right)=0\) có ít hơn 2 nghiệm

\(\Leftrightarrow\Delta'=9m^2-6\left(m+1\right)\le0\)

\(\Leftrightarrow\dfrac{1-\sqrt{7}}{3}\le m\le\dfrac{1+\sqrt{7}}{3}\)

23 tháng 4 2016

Ta có : \(y'=4x^3+12mx^2+6\left(m+1\right)x=2x\left(2x^2+6mx+3\left(m+1\right)\right)\)

\(\Rightarrow y'=0\Leftrightarrow x=0\) hoặc 

               \(\Leftrightarrow f\left(x\right)=2x^2+6mx+3m+3=0\)

a) Hàm số có 3 cực trị khi và chỉ khi \(f\left(x\right)\) có 2 nghiệm phân biệt khác 0

\(\Leftrightarrow\begin{cases}\Delta'=3\left(3m^2-2m-2\right)>0\\f\left(0\right)\ne0\end{cases}\)\(\Leftrightarrow\begin{cases}m< \frac{1-\sqrt{7}}{3}\cup m>\frac{1+\sqrt{7}}{3}\\m\ne-1\end{cases}\)

b) Hàm số chỉ có cực tiểu mà không có cực đại 

\(\Leftrightarrow\) hàm số không có 3 cực trị \(\Leftrightarrow\frac{1-\sqrt{7}}{3}\le m\le\frac{1+\sqrt{7}}{3}\)

21 tháng 10 2020

câu b m= -1 hàm số có 1 cực tiểu duy nhất

NV
3 tháng 4 2021

Với \(m=-1\) thỏa mãn

Với \(m\ne-1\) hàm chỉ có cực tiểu mà không có cực đại khi:

\(\left\{{}\begin{matrix}m+1>0\\-m\left(m+1\right)\ge0\end{matrix}\right.\) \(\Leftrightarrow-1< m\le0\)

Vậy \(-1\le m\le0\)

NV
27 tháng 7 2021

\(y'=3\left(m-1\right)x^2-6x-\left(m+1\right)\)

Hàm có cực đại và cực tiểu khi và chỉ khi \(y'=0\) có 2 nghiệm pb

\(\Leftrightarrow\left\{{}\begin{matrix}3\left(m-1\right)\ne0\\\Delta'=9+3\left(m-1\right)\left(m+1\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m^2>-2\left(\text{luôn đúng}\right)\end{matrix}\right.\) 

Vậy \(m\ne1\)

6 tháng 8 2018

Chọn C