tim GTLNcủa biểu thức4a+3/a^2+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1-3+3^2-3^3+...-3^{2021}+3^{2022}\)
\(\Rightarrow3A=3-3^2+3^3-3^4+...-3^{2022}+3^{2023}\)
\(\Rightarrow3A+A=4A\)
\(=\left(1-3+3^2-3^3+...-3^{2021}+3^{2022}\right)+\left(3-3^2+3^3-3^4+...-3^{2022}+3^{2023}\right)\)
\(=1+3^{2023}\)
\(\Rightarrow4A-3^{2023}=1+3^{2023}-3^{2023}=1\)
4x - x^2 đạt GTLN tại x = 2
Khi x = 2 thì 4x - x^2 = 4
=> 4x - x^2 + 3 = 4 + 3 = 7
Vậy GTLN của biểu thức trên là 7
Đặt \(A=4x-x^2+3\)
\(A=-\left(x^2-2.2x+2^2\right)+7\)
\(A=-\left(x-2\right)^2+7\)
Ta có: \(-\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x-2\right)^2+7\le7\forall x\)
\(A=7\Leftrightarrow-\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy \(A_{min}=7\Leftrightarrow x=2\)
Vì x2 ≥ 0 => 2x2 ≥ 0 ; |y - 2| ≥ 0 => 3|y - 2| ≥ 0
=> (2x2 + 3|y - 2|) ≥ 0
=> (2x2 + 3|y - 2|) - 2016 ≤ 2016
Dấu " = " xảy ra <=> 2x2 = 0 và 3|y - 2| = 0
<=> x2 = 0 |y - 2| = 0
<=> x = 0 y - 2 = 0
<=> x = 0 y = 2
Vậy GTLN C = 2016 khi x = 0; y = 2
b, Ta có: \(D=\frac{x^2+15}{x^2+3}=\frac{\left(x^2+3\right)+12}{x^2+3}=1+\frac{12}{x^2+3}\)
Vì x2 ≥ 0 => x2 + 3 ≥ 3
=> \(\frac{12}{x^2+3}\le\frac{12}{3}=4\)
=> \(1+\frac{12}{x^2+3}\le1+4=5\)
Dấu " = " xảy ra <=> x2 = 0 <=> x = 0
Vậy GTNN của D = 5 khi x = 0
Đề ngược??
1. a, => -12x+60+21-7x = 5
=> 81 - 19x = 5
=> 19x = 81 - 5 = 76
=> x = 76 : 19 = 4
Tk mk nha
a)
Ta có bất đẳng thức cơ bản :\(\left|x-y\right|\ge0;\left(2-x\right)^2\ge0\Rightarrow\left|x-y\right|+\left(2-x\right)^2\ge0\)
\(\Rightarrow M\le13-0=13\)
Đẳng thức xảy ra tại x=y=2
b)
Bất đẳng thức cơ bản: \(\left(4-x^2\right)^4\ge0\Rightarrow\left(4-x^2\right)^4+7\ge7\Rightarrow N\le\frac{2}{7}\)
Đẳng thức xảy ra tại \(x=2;x=-2\)
c)
\(P=\frac{2x-1}{x-1}=\frac{2\left(x-1\right)+1}{x-1}=2+\frac{1}{x-1}\)
Đến đây bạn sử dụng \(x-1\ge1\Rightarrow x\ge2\)
Tự tính tiếp
Đk: x \(\ne\)0; x \(\ne\)\(\pm\)3
Ta có: A = \(\left(\frac{1}{3}+\frac{3}{x^2-3x}\right):\left(\frac{x^2}{27-3x^2}+\frac{1}{x+3}\right)\)
A = \(\frac{x^2-3x+9}{3x\left(x-3\right)}:\frac{x^2+3\left(3-x\right)}{3\left(x+3\right)\left(3-x\right)}\)
A = \(\frac{x^2-3x+9}{3x\left(x-3\right)}\cdot\frac{3\left(3-x\right)\left(x+3\right)}{x^2-3x+9}\)
A = \(\frac{-\left(x+3\right)}{x}\)
Để A < -1 <=> \(-\frac{\left(x+3\right)}{x}< -1\) <=> \(\frac{-x-3}{x}+1< 0\)
<=> \(\frac{-x-3+x}{x}< 0\) <=> \(-\frac{3}{x}< 0\)
Do -3 <0 => x> 0
Vậy Để A < -1 <=> x > 0 và x khác 3
giá trị lớn nhất của biểu thức là 4