K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2021

\(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)

\(\frac{81}{243}+\frac{27}{243}+\frac{9}{243}+\frac{3}{243}+\frac{1}{243}\)

\(\frac{81+27+9+3+1}{243}\)

\(\frac{121}{243}\)

Câu 1:

C=1/3+1/9+1/27+1/81+1/243

3×C=3×(1/3+1/9+1/27+1/81+1/243)

3×C=1+1/3+1/9+1/27+1/81

3×C−C=(1+1/3+1/9+1/27+1/81)−(1/3+1/9+1/27+1/81+1/243)

2×C=1−1/243

2×C=242/243

C=242/243:2

C=121/243

20 tháng 3 2016

  \(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)

=\(1+\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}+\frac{1}{3^6}\)

=\(\frac{3^6}{3^6}+\frac{3^5}{3^6}+\frac{3^4}{3^6}+\frac{3^3}{3^6}+\frac{3^2}{3^6}+\frac{3^1}{3^6}+\frac{3^0}{3^6}\)

=\(\frac{3^6+3^5+3^4+3^3+3^2+3+1}{3^6}\)

=\(\frac{729+243+81+27+9+3}{729}\)

=\(\frac{1093}{729}\)

nha.

20 tháng 3 2016

tong cua day so tren la 1093/729

5 tháng 8 2016

\(\text{Đặt : }A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)

\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)

\(\Rightarrow3A-A=1-\frac{1}{729}\)

\(\Rightarrow2A=\frac{728}{729}\)

\(\Rightarrow A=\frac{728}{729}:2=\frac{364}{729}\)

5 tháng 8 2016

\(=\frac{364}{729}\)

6 tháng 5 2019

tổng các ps trên là ; \(\frac{364}{729}\)

6 tháng 5 2019

đặt biểu thức đó là X

ta có :

\(3X=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)

\(\Rightarrow3X-X=1-\frac{1}{729}\)

\(\Rightarrow X=\frac{728}{729}.\frac{1}{2}=\frac{364}{729}\)

12 tháng 6 2015

Gọi tong trên là A

\(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{81}+\frac{1}{243}+\frac{1}{7129}+\frac{1}{2187}\)

\(3A=\frac{1}{3}+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{729}\)

\(3A-A=\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\right)-\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}+\frac{1}{2187}\right)\)

\(2A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}-\frac{1}{3}-\frac{1}{9}-\frac{1}{27}-\frac{1}{81}-\frac{1}{243}-\frac{1}{729}-\frac{1}{2187}\)

\(2A=1-\frac{1}{2187}\)

\(2A=\frac{2186}{2187}\)

\(A=\frac{2186}{2187}:2\)

\(A=\frac{1093}{2187}\)

Vậy tổng A = \(\frac{1093}{2187}\)

12 tháng 6 2015

\(3y=3\cdot\frac{1}{1}+3\cdot\frac{1}{3}+3\cdot\frac{1}{9}+...+3\cdot\frac{1}{729}+3\cdot\frac{1}{2187}\)

     \(=3+\frac{1}{1}+\frac{1}{3}...+\frac{1}{729}\)

=> \(3y-y=3+\frac{1}{1}+\frac{1}{3}+..+\frac{1}{729}-\frac{1}{1}-\frac{1}{3}-...-\frac{1}{2187}\)

<=> 2y = 3- 1/2187

=> y = \(\frac{3-\frac{1}{2187}}{2}\)

22 tháng 7 2017

\(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)

\(=\frac{729}{729}+\frac{243}{729}+\frac{81}{729}+\frac{27}{729}+\frac{9}{729}+\frac{3}{729}+\frac{1}{729}\)

\(=\frac{729+243+81+27+9+3+1}{729}\)

\(=\frac{1093}{729}\)

22 tháng 7 2017

gọi biểu thức trên là A

ta có :             A = \(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\) (1)

          \(\frac{1}{3}\)x  A =\(\frac{1}{3}\)+\(\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}+\frac{1}{2187}\)   (2)           

lấy (1) - (2)

           \(\frac{2}{3}xA\)=  1 - \(\frac{1}{2187}\)

            \(\frac{2}{3}xA\)\(\frac{2186}{2187}\)

                  A       =  \(\frac{2186}{2187}:\frac{2}{3}\)

                  A       =      \(\frac{1093}{729}\)

4 tháng 7 2019

#)Giải :

Đặt \(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+...+\frac{1}{3^n}\left(n\in N\right)\)

\(\Rightarrow A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^n}\)

\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{n-1}}\)

\(\Rightarrow3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{n-1}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^n}\right)\)

\(\Rightarrow2A=1-\frac{1}{3^n}\)

\(\Rightarrow A=\frac{1-\frac{1}{3^n}}{2}\)

4 tháng 7 2019

S1 S2 S3 S4 A B C D

Giả sử ABCD là một hình vuông có cạnh là 1 đơn vị. Diện tích hình đó là 1.

Diện tích hình chữ nhật S1 bằng \(\frac{1}{3}\) hình vuông nên có diện tích là:

S1 = \(\frac{1}{3}\)

Chia ba phần còn lại của hình vuông ABCD, ta được hình vuông S2. Diện tích hình S2 bằng\(\frac{1}{9}\)hình vuông ABCD nên:

S2 = \(\frac{1}{9}\)

Tiếp tục chia ba phần con lại của của hình vuông ABCD, ta được hình chữ nhật S3 có diện tích:

S3 = \(\frac{1}{27}\)

Tiếp tục làm như thế và cộng lại, ta có:

S1 + S2 + S3 + S4 + S5 + S6 + ... = \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}+...\)

Như vậy càng kéo dài tổng diện tích của các hình đó thì tổng ấy sẽ tiến dần đến diện tích hinh vuông ABCD, hay nói cách khác:

S1 + S2 + S3 + S4 + S5 + S6 + ... = SABCD

hoặc  \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}+...\)= 1

22 tháng 5 2016

\(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+...+\frac{1}{531441}\)

\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{12}}\)

\(3A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{11}}\)

\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{11}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{12}}\right)\)

\(2A=1-\frac{1}{3^{12}}\)

\(2A=\frac{531440}{531441}\)

\(A=\frac{531440}{531441}\div2\)

\(A=\frac{265720}{531441}\)

Chúc bạn học tốt!!!!!!!!

5 tháng 10 2016

Đặt \(A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)

\(A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\)

\(3A=3\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\right)\)

\(3A=3+1+...+\frac{1}{3^4}\)

\(3A-A=\left(3+1+...+\frac{1}{3^4}\right)-\left(1+\frac{1}{3}+...+\frac{1}{3^5}\right)\)

\(2A=3-\frac{1}{3^5}\)

\(A=\frac{3-\frac{1}{3^5}}{2}\)

 

 

5 tháng 10 2016

Đặt \(S=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)

      \(S=1+\frac{1}{1\times3}+\frac{1}{3\times3}+\frac{1}{9\times3}+\frac{1}{27\times3}+\frac{1}{81\times3}\)

\(S\times3=\left(1+\frac{1}{1\times3}+\frac{1}{3\times3}+\frac{1}{9\times3}+\frac{1}{27\times3}+\frac{1}{81\times3}\right)\times3\)

\(S\times3=3+1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}\)

Xét: \(S\times3-S=\left(3+1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}\right)-\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right)\)

              \(S\times2=3-\frac{1}{243}\)

              \(S\times2=\frac{728}{243}\)

                    \(S=\frac{728}{243}\div2\)

                    \(S=\frac{364}{243}\)

Vậy \(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}=\frac{364}{243}\)

22 tháng 6 2017

dễ mk nhìn là biết

22 tháng 6 2017

Đặt A = \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)

3A = \(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)

3A - A = (\(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)) - (\(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\))

2A = 1 - \(\frac{1}{729}\) = \(\frac{728}{729}\)

A = \(\frac{728}{729}:2=\frac{364}{729}\)